Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 70

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Residual stress relief effect in gradient structural steel and remaining life evaluation under stochastic fatigue loads

Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Zhang, R.*; Su, Y. H.; Ao, N.*; Li, Z. W.*; Shinohara, Takenao; Shobu, Takahisa; Wu, S. C.*

International Journal of Fatigue, 202, p.109233_1 - 109233_16, 2026/01

Journal Articles

All-temperature barocaloric effects at pressure-induced phase transitions

Zhao, X.*; Zhang, Z.*; Hattori, Takanori; Wang, J.*; Li, L.*; Jia, Y.*; Li, W.*; Xue, J.*; Fan, X.*; Song, R.*; et al.

Nature Communications (Internet), 16, p.7713_1 - 7713_8, 2025/08

 Times Cited Count:0 Percentile:0.00

Caloric effects usually occur in the vicinity of solid-state phase transitions with a limited refrigeration temperature span. Here, we introduce and realize an unprecedented concept -all temperature barocaloric effect, i.e., a remarkable barocaloric effect in KPF$$_6$$ across an exceptionally wide temperature span, from 77.5 to 300 K and potentially down to 4 K, covering typical room temperature, liquid nitrogen, liquid hydrogen, and liquid helium refrigeration regions. The directly measured barocaloric adiabatic temperature change reaches 12 K at room temperature and 2.5 K at 77.5 K upon the release of a 250 MPa pressure. This effect is attributed to a persistent phase transition to a rhombohedral high pressure phases. We depict the thermodynamic energy landscape to account for the structural instability. This unique all-temperature barocaloric effect presents a novel approach to highly applicable solid-state refrigeration technology, transcending the conventional multi-stage scenario.

Journal Articles

Uncertainty quantification for severe-accident reactor modelling; Results and conclusions of the MUSA reactor applications work package

Brumm, S.*; Gabrielli, F.*; Sanchez Espinoza, V.*; Stakhanova, A.*; Groudev, P.*; Petrova, P.*; Vryashkova, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; et al.

Annals of Nuclear Energy, 211, p.110962_1 - 110962_16, 2025/02

 Times Cited Count:9 Percentile:96.17(Nuclear Science & Technology)

Journal Articles

Concurrent ${it operando}$ neutron imaging and diffraction analysis revealing spatial lithiation phase evolution in an ultra-thick graphite electrode

Strobl, M.*; Baur, M. E.*; Samothrakitis, S.*; Molamud, F.*; Zhang, X.*; Tung, P. K. M.*; Schmidt, S.*; Woracek, R.*; Lee, J.*; Kiyanagi, Ryoji; et al.

Advanced Energy Materials, p.2405238_1 - 2405238_9, 2025/01

 Times Cited Count:2 Percentile:68.15(Chemistry, Physical)

Journal Articles

Giant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenate

Zhang, Z.*; Hattori, Takanori; Song, R.*; Yu, D.*; Mole, R.*; Chen, J.*; He, L.*; Zhang, Z.*; Li, B.*

Journal of Applied Physics, 136(3), p.035105_1 - 035105_8, 2024/07

 Times Cited Count:3 Percentile:55.64(Physics, Applied)

Solid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF$$_6$$) and sodium hexafluoroarsenate (NaAsF$$_6$$) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF$$_6$$ is a rhombohedral structure with space group R$=3 by neutron powder diffraction. There are three Raman active vibration modes in NaPF$_6$$ and NaAsF$$_6$$, i.e., F$$_{2g}$$, E$$_g$$, and A$$_{1g}$$. The phase transition temperature varies with pressure at a rate of dT$$_t$$/dP = 250 and 310 K/GPa for NaPF$$_6$$ and NaAsF$$_6$$. The pressure-induced entropy changes of NaPF$$_6$$ and NaAsF$$_6$$ are determined to be around 45.2 and 35.6J kg$$^{-1}$$K$$^{-1}$$, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions.

Journal Articles

Gradient residual strain measurement procedure in surface impacted railway steel axles by using neutron scattering

Zhou, L.*; Zhang, H.*; Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Ao, N.*; Su, Y. H.; He, L. H.*; Li, X. H.*; Zhang, J. R.*; et al.

Metallurgical and Materials Transactions A, 55(7), p.2175 - 2185, 2024/07

 Times Cited Count:3 Percentile:54.81(Materials Science, Multidisciplinary)

Journal Articles

Spectral evidence for Dirac spinons in a kagome lattice antiferromagnet

Zeng, Z.*; Zhou, C.*; Zhou, H.*; Han, L.*; Chi, R.*; Li, K.*; Kofu, Maiko; Nakajima, Kenji; Wei, Y.*; Zhang, W.*; et al.

Nature Physics, 20(7), p.1097 - 1102, 2024/07

 Times Cited Count:20 Percentile:97.27(Physics, Multidisciplinary)

Journal Articles

A Systematic approach for the adequacy analysis of a set of experimental databases; Application in the framework of the ATRIUM activity

Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.

Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05

 Times Cited Count:7 Percentile:92.92(Nuclear Science & Technology)

Journal Articles

Phase transformation and equation of state in Ti-45Al alloy under high pressure

Li, X.*; Zhu, R.*; Xin, J.*; Luo, M.*; Shang, S.-L.*; Liu, Z.-K.*; Yin, C.*; Funakoshi, Kenichi*; Dippenaar, R. J.*; Higo, Yuji*; et al.

CALPHAD; Computer Coupling of Phase Diagrams and Thermochemistry, 84, p.102641_1 - 102641_6, 2024/03

 Times Cited Count:0 Percentile:0.00(Thermodynamics)

Journal Articles

Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co$$_{1/3}$$TaS$$_{2}$$

Park, P.*; Cho, W.*; Kim, C.*; An, Y.*; Kang, Y.-G.*; Avdeev, M.*; Sibille, R.*; Iida, Kazuki*; Kajimoto, Ryoichi; Lee, K. H.*; et al.

Nature Communications (Internet), 14, p.8346_1 - 8346_9, 2023/12

 Times Cited Count:28 Percentile:86.73(Multidisciplinary Sciences)

Journal Articles

3D-printed epidermal sweat microfluidic systems with integrated microcuvettes for precise spectroscopic and fluorometric biochemical assays

Yang, D. S.*; Wu, Y.*; Kanatzidis, E. E.*; Avila, R.*; Zhou, M.*; Bai, Y.*; Chen, S.*; Sekine, Yurina; Kim, J.*; Deng, Y.*; et al.

Materials Horizons, 10(11), p.4992 - 5003, 2023/09

 Times Cited Count:21 Percentile:83.49(Chemistry, Multidisciplinary)

This paper presents a set of findings that enhances the performance of these systems through the use of microfluidic networks, integrated valves and microscale optical cuvettes formed by three-dimensional printing in hard/soft hybrid materials systems, for accurate spectroscopic and fluorometric assays. Field studies demonstrate the capability of these microcuvette systems to evaluate the concentrations of copper, chloride, and glucose in sweat, along with the sweat pH, with laboratory grade accuracy and sensitivity.

Journal Articles

A One-third magnetization plateau phase as evidence for the Kitaev interaction in a honeycomb-lattice antiferromagnet

Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Xi, N.*; Gao, Y.-P.*; Ma, Z.*; Wang, W.*; Qi, Z.*; Zhang, S.*; Huang, Z.*; et al.

Nature Physics, 19(12), p.1883 - 1889, 2023/09

 Times Cited Count:23 Percentile:93.24(Physics, Multidisciplinary)

Journal Articles

Pressure engineering of van der Waals compound RhI$$_3$$; Bandgap narrowing, metallization, and remarkable enhancement of photoelectric activity

Fang, Y.*; Kong, L.*; Wang, R.*; Zhang, Z.*; Li, Z.*; Wu, Y.*; Bu, K.*; Liu, X.*; Yan, S.*; Hattori, Takanori; et al.

Materials Today Physics (Internet), 34, p.101083_1 - 101083_7, 2023/05

 Times Cited Count:8 Percentile:66.37(Materials Science, Multidisciplinary)

The layered van der Waals halides are particularly sensitive to external pressure, suggesting a feasible route to pinpoint their structure with extraordinary behavior. However, a very sensitive pressure response usually lead to a detrimental phase transition and/or lattice distortion, making the approach of materials manipulation in a continuous manner remain challenging. Here, the extremely weak interlayer coupling and high tunability of layered RhI$$_3$$ crystals are observed. A pressure-driven phase transition occurs at a moderate pressure of 5 GPa, interlinking to a change of layer stack mode. Strikingly, such a phase transition does not affect the tendency of quasi-linear bandgap narrowing, and a metallization with an ultra-broad tunability of 1.3 eV redshift is observed at higher pressures. Moreover, the carrier concentration increases by 4 orders of magnitude at 30 GPa, and the photocurrent enhances by 5 orders of magnitude at 7.8 GPa. These findings create new opportunities for exploring, tuning, and understanding the van der Waals halides by harnessing their unusual feature of a layered structure, which is promising for future devices based on materials-by-design that are atomically thin.

Journal Articles

A Colossal barocaloric effect induced by the creation of a high-pressure phase

Jiang, X.*; Hattori, Takanori; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; Yano, Shinichiro*; Chen, J.*; He, L.*; et al.

Materials Horizons, 10(3), p.977 - 982, 2023/03

 Times Cited Count:28 Percentile:91.60(Chemistry, Multidisciplinary)

As a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting world wide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF$$_{6}$$ exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase.

Journal Articles

Tensile overload-induced texture effects on the fatigue resistance of a CoCrFeMnNi high-entropy alloy

Lam, T.-N.*; Chin, H.-H.*; Zhang, X.*; Feng, R.*; Wang, H.*; Chiang, C.-Y.*; Lee, S. Y.*; Kawasaki, Takuro; Harjo, S.; Liaw, P. K.*; et al.

Acta Materialia, 245, p.118585_1 - 118585_9, 2023/02

 Times Cited Count:27 Percentile:88.89(Materials Science, Multidisciplinary)

Journal Articles

Grain refinement in titanium prevents low temperature oxygen embrittlement

Chong, Y.*; Gholizadeh, R.*; Tsuru, Tomohito; Zhang, R.*; Inoue, Koji*; Gao, W.*; Godfrey, A.*; Mitsuhara, Masatoshi*; Morris, J. W. Jr.*; Minor, A. M.*; et al.

Nature Communications (Internet), 14, p.404_1 - 404_11, 2023/02

 Times Cited Count:56 Percentile:97.51(Multidisciplinary Sciences)

Interstitial oxygen embrittles titanium, particularly at cryogenic temperatures, which necessitates a stringent control of oxygen content in fabricating titanium and its alloys. Here, we propose a structural strategy, via grain refinement, to alleviate this problem. Compared to a coarse-grained counterpart that is extremely brittle at 77K, the uniform elongation of an ultrafine-grained (UFG) microstructure (grain size $$sim$$2.0 $$mu$$m) in Ti-0.3wt.%O was successfully increased by an order of magnitude, maintaining an ultrahigh yield strength inherent to the UFG microstructure. This unique strength-ductility synergy in UFG Ti-0.3wt.%O was achieved via the combined effects of diluted grain boundary segregation of oxygen that helps to improve the grain boundary cohesive energy and enhanced $$<c+a>$$ dislocation activities that contribute to the excellent strain hardening ability. The present strategy could not only boost the potential applications of high strength Ti-O alloys at low temperatures, but could also be applied to other alloy systems, where interstitial solution hardening results into an undesirable loss of ductility.

Journal Articles

Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction

Liu, B.*; Feng, R.*; Busch, M.*; Wang, S.*; Wu, H.*; Liu, P.*; Gu, J.*; Bahadoran, A.*; Matsumura, Daiju; Tsuji, Takuya; et al.

ACS Nano, 16(9), p.14121 - 14133, 2022/09

 Times Cited Count:110 Percentile:98.76(Chemistry, Multidisciplinary)

Journal Articles

Transport model comparison studies of intermediate-energy heavy-ion collisions

Walter, H.*; Colonna, M.*; Cozma, D.*; Danielewicz, P.*; Ko, C. M.*; Kumar, R.*; Ono, Akira*; Tsang, M. Y. B*; Xu, J.*; Zhang, Y.-X.*; et al.

Progress in Particle and Nuclear Physics, 125, p.103962_1 - 103962_90, 2022/07

 Times Cited Count:101 Percentile:94.90(Physics, Nuclear)

Transport models are the main method to obtain physics information on the nuclear equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions to reach consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed by the various participating codes. These included both calculations of nuclear matter in a periodic box, which test individual ingredients of a transport code, and calculations of complete collisions of heavy ions. Over the years, five studies were performed within this project. They show, on one hand, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann-Uehling-Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. On the other hand, there still exist substantial differences when these codes are applied to real heavy-ion collisions. The results of transport simulations of heavy-ion collisions will have more significance if codes demonstrate that they can verify benchmark calculations such as the ones studied in these evaluations.

Journal Articles

Status of the uncertainty quantification for severe accident sequences of different NPP-designs in the frame of the H-2020 project MUSA

Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda$"i$, M.*; et al.

Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05

Journal Articles

Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered or recrystallized nanostructures

Liu, M.*; Gong, W.; Zheng, R.*; Li, J.*; Zhang, Z.*; Gao, S.*; Ma, C.*; Tsuji, Nobuhiro*

Acta Materialia, 226, p.117629_1 - 117629_13, 2022/03

 Times Cited Count:92 Percentile:99.46(Materials Science, Multidisciplinary)

70 (Records 1-20 displayed on this page)