Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zhang, T.*; Tajima, Hiroyuki*; Sekino, Yuta*; Uchino, Shun; Liang, H.*
Communications Physics (Internet), 6, p.86_1 - 86_7, 2023/04
Times Cited Count:0We theoretically propose the laser-induced Andreev reflection between two-component Fermi superfluid and normal states via spatially-uniform Rabi couplings. By analyzing the tunneling current between the superfluid and normal states up to the fourth order in the Rabi couplings, we find that the Andreev current exhibits unconventional non-Ohmic transport at zero temperature. Remarkably, the Andreev current gives the only contribution in the synthetic junction system at zero detunings regardless of the ratio of the chemical potential bias to the superfluid gap, which is in sharp contrast to that in the conventional superconductor-normal metal junction. Our result may also pave a way for understanding the black hole information paradox through the Andreev reflection as a quantum-information mirror.
Lam, T.-N.*; Chin, H.-H.*; Zhang, X.*; Feng, R.*; Wang, H.*; Chiang, C.-Y.*; Lee, S. Y.*; Kawasaki, Takuro; Harjo, S.; Liaw, P. K.*; et al.
Acta Materialia, 245, p.118585_1 - 118585_9, 2023/02
Times Cited Count:1 Percentile:44.11(Materials Science, Multidisciplinary)Wu, P.*; Murai, Naoki; Li, T.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Nakajima, Kenji; Xia, K.*; Peng, K.*; Zhang, Y.*; et al.
New Journal of Physics (Internet), 25(1), p.013032_1 - 013032_11, 2023/01
Times Cited Count:0 Percentile:0.02(Physics, Multidisciplinary)Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji
Annals of Nuclear Energy, 179, p.109389_1 - 109389_10, 2022/12
Times Cited Count:1 Percentile:58.67(Nuclear Science & Technology)Takatsuka, Daichi*; Morita, Koji*; Liu, W.*; Zhang, T.*; Nakamura, Takeshi*; Kamiyama, Kenji
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 10 Pages, 2022/10
Wang, Q.*; Hu, Q.*; Zhao, C.*; Yang, X.*; Zhang, T.*; Ilavsky, J.*; Kuzmenko, I.*; Ma, B.*; Tachi, Yukio
International Journal of Coal Geology, 261, p.104093_1 - 104093_15, 2022/09
Times Cited Count:1 Percentile:45.26(Energy & Fuels)Khalil, A. M. E.*; Han, L.*; Maamoun, I.; Tabish, T. A.*; Chen, Y.*; Eljamal, O.*; Zhang, S.*; Butler, D.*; Memon, F. A.*
Advanced Sustainable Systems (Internet), 6(8), p.2200016_1 - 2200016_16, 2022/08
Times Cited Count:0 Percentile:0(Green & Sustainable Science & Technology)Walter, H.*; Colonna, M.*; Cozma, D.*; Danielewicz, P.*; Ko, C. M.*; Kumar, R.*; Ono, Akira*; Tsang, M. Y. B*; Xu, J.*; Zhang, Y.-X.*; et al.
Progress in Particle and Nuclear Physics, 125, p.103962_1 - 103962_90, 2022/07
Times Cited Count:23 Percentile:96.81(Physics, Nuclear)Transport models are the main method to obtain physics information on the nuclear equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions to reach consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed by the various participating codes. These included both calculations of nuclear matter in a periodic box, which test individual ingredients of a transport code, and calculations of complete collisions of heavy ions. Over the years, five studies were performed within this project. They show, on one hand, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann-Uehling-Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. On the other hand, there still exist substantial differences when these codes are applied to real heavy-ion collisions. The results of transport simulations of heavy-ion collisions will have more significance if codes demonstrate that they can verify benchmark calculations such as the ones studied in these evaluations.
Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda, M.*; et al.
Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05
Zhang, T.; Lu, K.; Mano, Akihiro; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.
Fatigue & Fracture of Engineering Materials & Structures, 44(12), p.3399 - 3415, 2021/12
Times Cited Count:6 Percentile:69.66(Engineering, Mechanical)The Gurson-Tvergaard-Needleman (GTN) model is considered a promising approach in failure prediction as it takes the micromechanical behavior of ductile metals into consideration and its function exhibits a relatively clear physical meaning. Although the GTN model has been widely investigated in the past decades, its engineering applications have scarcely progressed due to the difficulty in determining the eight strongly coupled parameters. Based on the physical background of GTN model, a set of methods was established to determine the parameters in the GTN model. The knowledge of continuum damage mechanics was used to experimentally determine the development of void volume fraction through the variation of effective Young's modulus in a uniaxial tensile test, and three parameters regarding void nucleation were analytically derived using a newly established method. Other parameters in the GTN model were also uniquely determined through a joint use of the chemical composition analysis (for the initial void volume fraction), the cell model analyses (for the two constitutive parameters), and the inverse finite element method (for the two failure parameters). The reliability of this novel parameter determination method was verified through the failure prediction of both cracked and uncracked specimens of carbon steel STPT410.
Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji
Extended abstracts of the 2nd Asian Conference on Thermal Sciences (Internet), 2 Pages, 2021/10
For the Japanese sodium cooled fast reactor, a fuel subassembly with an inner duct structure (FAIDUS) was designed to avoid the re-criticality by preventing the large-scale pool formation. In the present study, using the finite volume particle method, the EAGLE ID1 test which was an in-pile test performed to demonstrate the effectiveness of FAIDUS was numerically simulated and the thermal-hydraulic mechanisms underlying the heat transfer process were analyzed.
Wang, Y.*; Jia, G.*; Cui, X.*; Zhao, X.*; Zhang, Q.*; Gu, L.*; Zheng, L.*; Li, L. H.*; Wu, Q.*; Singh, D. J.*; et al.
Chem, 7(2), p.436 - 449, 2021/02
Times Cited Count:121 Percentile:99.8(Chemistry, Multidisciplinary)Zhang, T.; Lu, K.; Katsuyama, Jinya; Li, Y.
International Journal of Pressure Vessels and Piping, 189, p.104262_1 - 104262_12, 2021/02
Times Cited Count:3 Percentile:56.2(Engineering, Multidisciplinary)He, H.*; Naeem, M.*; Zhang, F.*; Zhao, Y.*; Harjo, S.; Kawasaki, Takuro; Wang, B.*; Wu, X.*; Lan, S.*; Wu, Z.*; et al.
Nano Letters, 21(3), p.1419 - 1426, 2021/02
Times Cited Count:24 Percentile:94.49(Chemistry, Multidisciplinary)Zhang, T.*; Funakoshi, Kanji*; Liu, X.*; Liu, W.*; Morita, Koji*; Kamiyama, Kenji
Annals of Nuclear Energy, 150, p.107856_1 - 107856_10, 2021/01
Times Cited Count:5 Percentile:79.86(Nuclear Science & Technology)Zhang, D.*; Hu, X.*; Chen, T.*; Abernathy, D. L.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Foley, B. J.*; Yoon, M.*; Choi, J. J.*; et al.
Physical Review B, 102(22), p.224310_1 - 224310_10, 2020/12
Times Cited Count:4 Percentile:34.14(Materials Science, Multidisciplinary)Naeem, M.*; He, H.*; Harjo, S.; Kawasaki, Takuro; Zhang, F.*; Wang, B.*; Lan, S.*; Wu, Z.*; Wu, Y.*; Lu, Z.*; et al.
Scripta Materialia, 188, p.21 - 25, 2020/11
Times Cited Count:43 Percentile:97.2(Nanoscience & Nanotechnology)Kaneko, Koji; Cheung, Y. W.*; Hu, Y.*; Imai, Masaki*; Tanioku, Yasuaki*; Kanagawa, Hibiki*; Murakawa, Joichi*; Moriyama, Kodai*; Zhang, W.*; Lai, K. T.*; et al.
JPS Conference Proceedings (Internet), 30, p.011032_1 - 011032_6, 2020/03
Naeem, M.*; He, H.*; Zhang, F.*; Huang, H.*; Harjo, S.; Kawasaki, Takuro; Wang, B.*; Lan, S.*; Wu, Z.*; Wang, F.*; et al.
Science Advances (Internet), 6(13), p.eaax4002_1 - eaax4002_8, 2020/03
Times Cited Count:109 Percentile:98.93(Multidisciplinary Sciences)Li, X.*; Liu, P.-F.*; Zhao, E.*; Zhang, Z.*; Guide, T.*; Le, M. D.*; Avdeev, M.*; Ikeda, Kazutaka*; Otomo, Toshiya*; Kofu, Maiko; et al.
Nature Communications (Internet), 11, p.942_1 - 942_9, 2020/02
Times Cited Count:27 Percentile:90.23(Multidisciplinary Sciences)In high-performance thermoelectric materials, there are two main low thermal conductivity mechanisms: the phonon anharmonic and phonon scattering resulting from the dynamic disorder, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in -MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the intrinsic distorted rocksalt sublattice in this compound, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in
-MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.