Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zhang, Z.*; Hattori, Takanori; Song, R.*; Yu, D.*; Mole, R.*; Chen, J.*; He, L.*; Zhang, Z.*; Li, B.*
Journal of Applied Physics, 136(3), p.035105_1 - 035105_8, 2024/07
Times Cited Count:1 Percentile:0.00(Physics, Applied)Solid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF) and sodium hexafluoroarsenate (NaAsF) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF is a rhombohedral structure with space group R and NaAsF, i.e., F, E, and A. The phase transition temperature varies with pressure at a rate of dT/dP = 250 and 310 K/GPa for NaPF and NaAsF. The pressure-induced entropy changes of NaPF and NaAsF are determined to be around 45.2 and 35.6J kgK, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions.
Liao, J.*; Huang, Z.*; Shangguan, Y.*; Zhang, B.*; Cheng, S.*; Xu, H.*; Kajimoto, Ryoichi; Kamazawa, Kazuya*; Bao, S.*; Wen, J.*
Physical Review B, 109(22), p.224411_1 - 224411_10, 2024/06
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.
Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05
Times Cited Count:4 Percentile:96.65(Nuclear Science & Technology)Li, X.*; Zhu, R.*; Xin, J.*; Luo, M.*; Shang, S.-L.*; Liu, Z.-K.*; Yin, C.*; Funakoshi, Kenichi*; Dippenaar, R. J.*; Higo, Yuji*; et al.
CALPHAD; Computer Coupling of Phase Diagrams and Thermochemistry, 84, p.102641_1 - 102641_6, 2024/03
Times Cited Count:0 Percentile:0.00(Thermodynamics)Zhou, Y.*; Song, W.*; Zhang, F.*; Wu, Y.*; Lei, Z.*; Jiao, M.*; Zhang, X.*; Dong, J.*; Zhang, Y.*; Yang, M.*; et al.
Journal of Alloys and Compounds, 971, p.172635_1 - 172635_7, 2024/01
Times Cited Count:1 Percentile:18.99(Chemistry, Physical)Zhang, A.*; Deng, K.*; Sheng, J.*; Liu, P.*; Kumar, S.*; Shimada, Kenya*; Jiang, Z.*; Liu, Z.*; Shen, D.*; Li, J.*; et al.
Chinese Physics Letters, 40(12), p.126101_1 - 126101_8, 2023/12
Times Cited Count:7 Percentile:81.71(Physics, Multidisciplinary)Lloveras, P.*; Zhang, Z.*; Zeng, M.*; Barrio, M.*; Kawakita, Yukinobu; Yu, D.*; Lin, S.*; Li, K.*; Moya, X.*; Tamarit, J.-L.*; et al.
Barocaloric Effects in the Solid State; Materials and methods, p.7_1 - 7_30, 2023/10
Times Cited Count:232 Percentile:99.37(Multidisciplinary Sciences)As Chapter 1 of the ebook entitled as "Barocaloric Effects in the Solid State", various plastic crystals (PC) showing colossal barocaloric (BC) effect are introduced. A method to determine the BC response in PCs, thermodynamic origin of BC effects, spectroscopic insights from quasi-elastic neutron scattering and application of PCs are explained.
Bao, S.*; Gu, Z.-L.*; Shangguan, Y.*; Huang, Z.*; Liao, J.*; Zhao, X.*; Zhang, B.*; Dong, Z.-Y.*; Wang, W.*; Kajimoto, Ryoichi; et al.
Nature Communications (Internet), 14, p.6093_1 - 6093_9, 2023/09
Times Cited Count:12 Percentile:92.78(Multidisciplinary Sciences)Jiang, X.*; Hattori, Takanori; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; Yano, Shinichiro*; Chen, J.*; He, L.*; et al.
Materials Horizons, 10(3), p.977 - 982, 2023/03
Times Cited Count:19 Percentile:93.10(Chemistry, Multidisciplinary)As a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting world wide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase.
Zhang, J.*; Kuang, L.*; Mou, Z.*; Kondo, Toshiaki*; Koarashi, Jun; Atarashi-Andoh, Mariko; Li, Y.*; Tang, X.*; Wang, Y.-P.*; Peuelas, J.*; et al.
Plant and Soil, 481(1-2), p.349 - 365, 2022/12
Times Cited Count:8 Percentile:67.58(Agronomy)Zhang, M. M.*; Tian, Y. L.*; Wang, Y. S.*; Zhang, Z. Y.*; Gan, Z. G.*; Yang, H. B.*; Huang, M. H.*; Ma, L.*; Yang, C. L.*; Wang, J. G.*; et al.
Physical Review C, 106(2), p.024305_1 - 024305_6, 2022/08
Times Cited Count:3 Percentile:50.12(Physics, Nuclear)Walter, H.*; Colonna, M.*; Cozma, D.*; Danielewicz, P.*; Ko, C. M.*; Kumar, R.*; Ono, Akira*; Tsang, M. Y. B*; Xu, J.*; Zhang, Y.-X.*; et al.
Progress in Particle and Nuclear Physics, 125, p.103962_1 - 103962_90, 2022/07
Times Cited Count:76 Percentile:96.00(Physics, Nuclear)Transport models are the main method to obtain physics information on the nuclear equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions to reach consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed by the various participating codes. These included both calculations of nuclear matter in a periodic box, which test individual ingredients of a transport code, and calculations of complete collisions of heavy ions. Over the years, five studies were performed within this project. They show, on one hand, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann-Uehling-Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. On the other hand, there still exist substantial differences when these codes are applied to real heavy-ion collisions. The results of transport simulations of heavy-ion collisions will have more significance if codes demonstrate that they can verify benchmark calculations such as the ones studied in these evaluations.
Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Huang, H.*; Li, Z. H.*; Li, J. G.*; Guo, C. Y.*; 34 of others*
Physics Letters B, 829, p.137129_1 - 137129_7, 2022/06
Times Cited Count:6 Percentile:74.34(Astronomy & Astrophysics)Liu, M.*; Gong, W.; Zheng, R.*; Li, J.*; Zhang, Z.*; Gao, S.*; Ma, C.*; Tsuji, Nobuhiro*
Acta Materialia, 226, p.117629_1 - 117629_13, 2022/03
Times Cited Count:64 Percentile:99.41(Materials Science, Multidisciplinary)Wei, D.*; Wang, L.*; Zhang, Y.*; Gong, W.; Tsuru, Tomohito; Lobzenko, I.; Jiang, J.*; Harjo, S.; Kawasaki, Takuro; Bae, J. W.*; et al.
Acta Materialia, 225, p.117571_1 - 117571_16, 2022/02
Times Cited Count:85 Percentile:99.69(Materials Science, Multidisciplinary)Yang, J.*; Ren, W.*; Zhao, X.*; Kikuchi, Tatsuya*; Miao, P.*; Nakajima, Kenji; Li, B.*; Zhang, Z.*
Journal of Materials Science & Technology, 99, p.55 - 60, 2022/02
Times Cited Count:10 Percentile:55.27(Materials Science, Multidisciplinary)High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices, differing from traditional alloys. Here, we investigate magnetic and thermal transport properties of the prototype face-centered-cubic high-entropy alloy CrMnFeCoNi by combining physical properties measurements and neutron scattering. Direct-current (dc) and alternating-current (ac) magnetizations measurements indicate a mictomagnetic behavior with coexisting antiferromagnetic and ferromagnetic interactions in the entire temperature region and three anomalies are found at about 80, 50, and 20 K, which are related to the paramagnetic to antiferromagnetic transition, the antiferromagnetic to ferromagnetic transition, and the spin freezing, respectively. The electrical and thermal conductivities are significantly reduced compared to Ni and the temperature dependence of lattice thermal conductivity exhibits a glass-like plateau. Inelastic neutron scattering measurements suggest weak anharmonicity so that the thermal transport is expected to be dominated by the defect scattering.
Wang, X.*; Tang, X.*; Zhang, P.*; Wang, Y.*; Gao, D.*; Liu, J.*; Hui, K.*; Wang, Y.*; Dong, X.*; Hattori, Takanori; et al.
Journal of Physical Chemistry Letters (Internet), 12(50), p.12055 - 12061, 2021/12
Times Cited Count:10 Percentile:62.66(Chemistry, Physical)Substituted polyacetylene is expected to improve the chemical stability, physical properties, and additional functions of the polyacetylene backbones, but its diversity is very limited. Here, by applying external pressure on solid acetylenedicarboxylic acid, we report the first crystalline poly-dicarboxylacetylene with every carbon on the trans-polyacetylene backbone bonded to a carboxyl group, which is very hard to synthesize by traditional methods. This unique structure combines the extremely high content of carbonyl groups and high conductivity of a polyacetylene backbone, which exhibits a high specific capacity and excellent cycling/rate performance as a Li-ion battery (LIB) anode. We present a completely functionalized crystalline polyacetylene and provide a high-pressure solution for the synthesis of polymeric LIB materials and other polymeric materials with a high content of active groups.
Soba, A.*; Prudil, A.*; Zhang, J.*; Dethioux, A.*; Han, Z.*; Dostal, M.*; Matocha, V.*; Marelle, V.*; Lasnel-Payan, J.*; Kulacsy, K.*; et al.
Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10
He, H.*; Naeem, M.*; Zhang, F.*; Zhao, Y.*; Harjo, S.; Kawasaki, Takuro; Wang, B.*; Wu, X.*; Lan, S.*; Wu, Z.*; et al.
Nano Letters, 21(3), p.1419 - 1426, 2021/02
Times Cited Count:62 Percentile:96.39(Chemistry, Multidisciplinary)Guo, J.*; Zhao, X.*; Kawamura, Seiko; Ling, L.*; Wang, J.*; He, L.*; Nakajima, Kenji; Li, B.*; Zhang, Z.*
Physical Review Materials (Internet), 4(6), p.064410_1 - 064410_7, 2020/06
Times Cited Count:18 Percentile:57.68(Materials Science, Multidisciplinary)