Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; Kofu, Maiko; Nakajima, Kenji; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.
Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03
Times Cited Count:6 Percentile:97.19(Physics, Applied)Zhou, Y.*; Song, W.*; Zhang, F.*; Wu, Y.*; Lei, Z.*; Jiao, M.*; Zhang, X.*; Dong, J.*; Zhang, Y.*; Yang, M.*; et al.
Journal of Alloys and Compounds, 971, p.172635_1 - 172635_7, 2024/01
Times Cited Count:1 Percentile:22.95(Chemistry, Physical)Bao, S.*; Gu, Z.-L.*; Shangguan, Y.*; Huang, Z.*; Liao, J.*; Zhao, X.*; Zhang, B.*; Dong, Z.-Y.*; Wang, W.*; Kajimoto, Ryoichi; et al.
Nature Communications (Internet), 14, p.6093_1 - 6093_9, 2023/09
Times Cited Count:12 Percentile:92.34(Multidisciplinary Sciences)Esser, S. P.*; Rahlff, J.*; Zhao, W.*; Predl, M.*; Plewka, J.*; Sures, K.*; Wimmer, F.*; Lee, J.*; Adam, P. S.*; McGonigle, J.*; et al.
Nature Microbiology (Internet), 8(9), p.1619 - 1633, 2023/09
Times Cited Count:5 Percentile:75.28(Microbiology)Sheng, J.*; Wang, L.*; Candini, A.*; Jiang, W.*; Huang, L.*; Xi, B.*; Zhao, J.*; Ge, H.*; Zhao, N.*; Fu, Y.*; et al.
Proceedings of the National Academy of Sciences of the United States of America, 119(51), p.e2211193119_1 - e2211193119_9, 2022/12
Times Cited Count:11 Percentile:80.33(Multidisciplinary Sciences)Wang, Q.*; Hu, Q.*; Zhao, C.*; Yang, X.*; Zhang, T.*; Ilavsky, J.*; Kuzmenko, I.*; Ma, B.*; Tachi, Yukio
International Journal of Coal Geology, 261, p.104093_1 - 104093_15, 2022/09
Times Cited Count:10 Percentile:74.93(Energy & Fuels)Sheng, Q.*; Kaneko, Tatsuya*; Yamakawa, Kohtaro*; Guguchia, Z.*; Gong, Z.*; Zhao, G.*; Dai, G.*; Jin, C.*; Guo, S.*; Fu, L.*; et al.
Physical Review Research (Internet), 4(3), p.033172_1 - 033172_14, 2022/09
Suzuki, Hakuto*; Zhao, G.*; Okamoto, Jun*; Sakamoto, Shoya*; Chen, Z.-Y.*; Nonaka, Yosuke*; Shibata, Goro; Zhao, K.*; Chen, B.*; Wu, W.-B.*; et al.
Journal of the Physical Society of Japan, 91(6), p.064710_1 - 064710_5, 2022/06
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Zhao, Y.*; Suzuki, T.*; Iimori, T.*; Kim, H.-W.*; Ahn, J. R.*; Horio, Masafumi*; Sato, Yusuke*; Fukaya, Yuki; Kanai, T.*; Okazaki, K.*; et al.
Physical Review B, 105(11), p.115304_1 - 115304_8, 2022/03
Times Cited Count:1 Percentile:10.22(Materials Science, Multidisciplinary)no abstracts in English
Yang, J.*; Ren, W.*; Zhao, X.*; Kikuchi, Tatsuya*; Miao, P.*; Nakajima, Kenji; Li, B.*; Zhang, Z.*
Journal of Materials Science & Technology, 99, p.55 - 60, 2022/02
Times Cited Count:9 Percentile:53.39(Materials Science, Multidisciplinary)High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices, differing from traditional alloys. Here, we investigate magnetic and thermal transport properties of the prototype face-centered-cubic high-entropy alloy CrMnFeCoNi by combining physical properties measurements and neutron scattering. Direct-current (dc) and alternating-current (ac) magnetizations measurements indicate a mictomagnetic behavior with coexisting antiferromagnetic and ferromagnetic interactions in the entire temperature region and three anomalies are found at about 80, 50, and 20 K, which are related to the paramagnetic to antiferromagnetic transition, the antiferromagnetic to ferromagnetic transition, and the spin freezing, respectively. The electrical and thermal conductivities are significantly reduced compared to Ni and the temperature dependence of lattice thermal conductivity exhibits a glass-like plateau. Inelastic neutron scattering measurements suggest weak anharmonicity so that the thermal transport is expected to be dominated by the defect scattering.
Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Cai, Z.*; Wang, W.*; Huang, Z.*; Ma, Z.*; Liao, J.*; Zhao, X.*; Kajimoto, Ryoichi; et al.
Physical Review B, 104(22), p.224430_1 - 224430_8, 2021/12
Times Cited Count:1 Percentile:5.86(Materials Science, Multidisciplinary)Fukaya, Yuki; Zhao, Y.*; Kim, H.-W.*; Ahn, J.-R.*; Fukidome, Hirokazu*; Matsuda, Iwao*
Physical Review B, 104(18), p.L180202_1 - L180202_5, 2021/11
Times Cited Count:13 Percentile:70.67(Materials Science, Multidisciplinary)no abstracts in English
Hao, Y. Q.*; Wo, H. L.*; Gu, Y. M.*; Zhang, X. W.*; Gu, Y. Q.*; Zheng, S. Y.*; Zhao, Y.*; Xu, G. Y.*; Lynn, J. W.*; Nakajima, Kenji; et al.
Science China; Physics, Mechanics & Astronomy, 64(3), p.237411_1 - 237411_6, 2021/03
Times Cited Count:11 Percentile:69.18(Physics, Multidisciplinary)Wang, Y.*; Jia, G.*; Cui, X.*; Zhao, X.*; Zhang, Q.*; Gu, L.*; Zheng, L.*; Li, L. H.*; Wu, Q.*; Singh, D. J.*; et al.
Chem, 7(2), p.436 - 449, 2021/02
Times Cited Count:244 Percentile:99.77(Chemistry, Multidisciplinary)He, H.*; Naeem, M.*; Zhang, F.*; Zhao, Y.*; Harjo, S.; Kawasaki, Takuro; Wang, B.*; Wu, X.*; Lan, S.*; Wu, Z.*; et al.
Nano Letters, 21(3), p.1419 - 1426, 2021/02
Times Cited Count:60 Percentile:96.41(Chemistry, Multidisciplinary)Guo, J.*; Zhao, X.*; Kawamura, Seiko; Ling, L.*; Wang, J.*; He, L.*; Nakajima, Kenji; Li, B.*; Zhang, Z.*
Physical Review Materials (Internet), 4(6), p.064410_1 - 064410_7, 2020/06
Times Cited Count:16 Percentile:59.02(Materials Science, Multidisciplinary)Li, X.*; Liu, P.-F.*; Zhao, E.*; Zhang, Z.*; Guide, T.*; Le, M. D.*; Avdeev, M.*; Ikeda, Kazutaka*; Otomo, Toshiya*; Kofu, Maiko; et al.
Nature Communications (Internet), 11, p.942_1 - 942_9, 2020/02
Times Cited Count:52 Percentile:91.90(Multidisciplinary Sciences)In high-performance thermoelectric materials, there are two main low thermal conductivity mechanisms: the phonon anharmonic and phonon scattering resulting from the dynamic disorder, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in -MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the intrinsic distorted rocksalt sublattice in this compound, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in -MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.
Wo, H.*; Wang, Q.*; Shen, Y.*; Zhang, X.*; Hao, Y.*; Feng, Y.*; Shen, S.*; He, Z.*; Pan, B.*; Wang, W.*; et al.
Physical Review Letters, 122(21), p.217003_1 - 217003_5, 2019/05
Times Cited Count:5 Percentile:40.10(Physics, Multidisciplinary)Yin, H.*; Chung, B.*; Chen, F.*; Ouchi, Takanari*; Zhao, J.*; Tanaka, Nobuyuki; Sadoway, D. R.*
Nature Energy (Internet), 3(2), p.127 - 131, 2018/02
Times Cited Count:62 Percentile:87.28(Energy & Fuels)We disclose a new porous electronically conductive membrane, which achieves chemical selectivity by preferred faradaic reaction. This shift in membrane mechanism grants access to a variety of heretofore forbidden choices for positive and negative electrode metals and allows the battery to charge-discharge at high rate without degradation. Fitted with a porous membrane of TiN, a displacement cell comprising a Pb positive electrode, a Li Pb negative electrode, and LiCl-KCl eutectic electrolyte was cycled at 410C and exhibited a coulombic efficiency of 92%. The capacity fade rate was measured to be 0.00172% per cycle, which is tantamount to retention of greater than 94% of initial capacity after 10 years. Most significant from the standpoint of scalability, we show that the faradaic membrane can be fashioned out of metal so as to be mechanically durable and therefore easily mass-produced at large scale with a thin cross-section for minimal ohmic drop in cell voltage.
Tam, D. M.*; Song, Y.*; Man, H.*; Cheung, S. C.*; Yin, Z.*; Lu, X.*; Wang, W.*; Frandsen, B. A.*; Liu, L.*; Gong, Z.*; et al.
Physical Review B, 95(6), p.060505_1 - 060505_6, 2017/02
Times Cited Count:23 Percentile:69.35(Materials Science, Multidisciplinary)