Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 34

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Uncertainty quantification for severe-accident reactor modelling; Results and conclusions of the MUSA reactor applications work package

Brumm, S.*; Gabrielli, F.*; Sanchez Espinoza, V.*; Stakhanova, A.*; Groudev, P.*; Petrova, P.*; Vryashkova, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; et al.

Annals of Nuclear Energy, 211, p.110962_1 - 110962_16, 2025/02

 Times Cited Count:1 Percentile:75.38(Nuclear Science & Technology)

Journal Articles

High-pressure polymerization of phenol toward degree-4 carbon nanothread

Yang, X.*; Che, G.*; Wang, Y.*; Zhang, P.*; Tang, X.*; Lang, P.*; Gao, D.*; Wang, X.*; Wang, Y.*; Hattori, Takanori; et al.

Nano Letters, 25(3), p.1028 - 1035, 2025/01

 Times Cited Count:0

Saturated sp$$^3$$-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.5 and 4 GPa. Above 20 GPa, phenol polymerizes into degree-4 CNThs featuring hydroxyl and carbonyl groups. Hydrogen transfer of hydroxyl groups was found to hinder the formation of degree-6 nanothreads. Our findings highlight the crucial role of the hydroxyl group in halting further intracolumn polymerization and offer valuable insights for future mechanism research and nanomaterial synthesis.

Journal Articles

Pressure-induced polymerization of 1,4-difluorobenzene towards fluorinated diamond nanothreads

Che, G.*; Fei, Y.*; Tang, X.*; Zhao, Z.*; Hattori, Takanori; Abe, Jun*; Wang, X.*; Ju, J.*; Dong, X.*; Wang, Y.*; et al.

Physical Chemistry Chemical Physics, 27(2), p.1112 - 1118, 2025/01

 Times Cited Count:0 Percentile:0.00(Chemistry, Physical)

Pressure-induced polymerization (PIP) of aromatic molecules has emerged as an effective method for synthesizing various carbon-based materials. In this work, PIP of 1,4-difluorobenzene (1,4-DFB) was investigated. ${it In situ}$ high-pressure investigations of 1,4-DFB reveal a phase transition at approximately 12.0 GPa and an irreversible chemical reaction at 18.7 GPa. Structural analysis of the product and the kinetics of the reaction uncovered the formation of pseudohexagonal stacked fluoro-diamond nanothreads with linear growth. Compared to the crystal structures of benzene under high pressure, 1,4-DFB exhibits higher compression along the [001] axis. The anisotropic compression is attributed to the stronger H$$cdot cdot cdot pi$$ interaction along the [01$$overline{1}$$] axis and the potential compression-inhibiting H$$cdot cdot cdot$$F interactions along the [100] and [010] axes, and it facilitates a possible reaction pathway along the [01$$overline{1}$$] axis. This work emphasizes the crucial role of functionalization in modulating molecular stacking and influencing the reaction pathway.

Journal Articles

Unique magnetic transition process demonstrating the effectiveness of bond percolation theory in a quantum magnet

Zheng, X.-G.*; Yamauchi, Ichihiro*; Hagihara, Masato; Nishibori, Eiji*; Kawae, Tatsuya*; Watanabe, Isao*; Uchiyama, Tomoki*; Chen, Y.*; Xu, C.-N.*

Nature Communications (Internet), 15, p.9989_1 - 9989_12, 2024/11

 Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)

Journal Articles

Brightening triplet excitons enable high-performance white-light emission in organic small molecules via integrating n-$$pi^*/pi$$-$$pi^*$$ transitions

Yang, Q.*; Yang, X.*; Wang, Y.*; Fei, Y.*; Li, F.*; Zheng, H.*; Li, K.*; Han, Y.*; Hattori, Takanori; Zhu, P.*; et al.

Nature Communications (Internet), 15, p.7778_1 - 7778_9, 2024/09

 Times Cited Count:2 Percentile:0.00(Multidisciplinary Sciences)

Luminescent materials that simultaneously embody bright singlet and triplet excitons hold great potential in optoelectronics, signage, and information encryption. However, achieving high-performance white-light emission is severely hampered by their inherent unbalanced contribution of fluorescence and phosphorescence. Herein, we address this challenge by pressure treatment engineering via hydrogen bonding cooperativity effect to realize the mixture of n-$$pi^*/pi$$-$$pi^*$$ transitions, where the triplet state emission was boosted from 7% to 40% in isophthalic acid (IPA). A superior white-light emission based on hybrid fluorescence and phosphorescence was harvested in pressure-treated IPA, and the photoluminescence quantum yield was increased to 75% from the initial 19% (blue-light emission). In-situ high-pressure IR spectra, X ray diffraction, and neutron diffraction reveal continuous strengthening of the hydrogen bonds with the increase of pressure. Furthermore, this enhanced hydrogen bond is retained down to the ambient conditions after pressure treatment, awarding the targeted IPA efficient intersystem crossing for balanced singlet/triplet excitons population and resulting in efficient white-light emission. This work not only proposes a route for brightening triplet states in organic small molecule, but also regulates the ratio of singlet and triplet excitons to construct high-performance white-light emission.

Journal Articles

A Systematic approach for the adequacy analysis of a set of experimental databases; Application in the framework of the ATRIUM activity

Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.

Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05

 Times Cited Count:4 Percentile:95.99(Nuclear Science & Technology)

Journal Articles

Status of the uncertainty quantification for severe accident sequences of different NPP-designs in the frame of the H-2020 project MUSA

Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda$"i$, M.*; et al.

Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05

Journal Articles

Crystalline fully carboxylated polyacetylene obtained under high pressure as a Li-ion battery anode material

Wang, X.*; Tang, X.*; Zhang, P.*; Wang, Y.*; Gao, D.*; Liu, J.*; Hui, K.*; Wang, Y.*; Dong, X.*; Hattori, Takanori; et al.

Journal of Physical Chemistry Letters (Internet), 12(50), p.12055 - 12061, 2021/12

 Times Cited Count:10 Percentile:61.73(Chemistry, Physical)

Substituted polyacetylene is expected to improve the chemical stability, physical properties, and additional functions of the polyacetylene backbones, but its diversity is very limited. Here, by applying external pressure on solid acetylenedicarboxylic acid, we report the first crystalline poly-dicarboxylacetylene with every carbon on the trans-polyacetylene backbone bonded to a carboxyl group, which is very hard to synthesize by traditional methods. This unique structure combines the extremely high content of carbonyl groups and high conductivity of a polyacetylene backbone, which exhibits a high specific capacity and excellent cycling/rate performance as a Li-ion battery (LIB) anode. We present a completely functionalized crystalline polyacetylene and provide a high-pressure solution for the synthesis of polymeric LIB materials and other polymeric materials with a high content of active groups.

Journal Articles

Phase transition and chemical reactivity of 1H-tetrazole under high pressure up to 100 GPa

Gao, D.*; Tang, X.*; Wang, X.*; Yang, X.*; Zhang, P.*; Che, G.*; Han, J.*; Hattori, Takanori; Wang, Y.*; Dong, X.*; et al.

Physical Chemistry Chemical Physics, 23(35), p.19503 - 19510, 2021/09

 Times Cited Count:5 Percentile:33.81(Chemistry, Physical)

Pressure-induced phase transition and polymerization of nitrogen-rich molecules are widely focused due to its extreme importance for the development of green high energy density materials. Here, we present a study of the phase transition and chemical reaction of 1H-tetrazole up to 100 GPa by using ${it in situ}$ Raman, IR, X-ray diffraction, neutron diffraction techniques and theoretical calculation. A phase transition above 2.6 GPa was identified and the high-pressure structure was determined with one molecule in a unit cell. The 1H-tetrazole polymerizes reversibly below 100 GPa, probably through a carbon-nitrogen bonding instead of nitrogen-nitrogen bonding. Our studies updated the structure model of the high pressure phase of 1H-tetrazole, and presented the possible intermolecular bonding route for the first time, which gives new insights to understand the phase transition and chemical reaction of nitrogen-rich compounds, and benefit for designing new high energy density materials.

Journal Articles

Field-tuned magnetic structure and phase diagram of the honeycomb magnet YbCl$$_3$$

Hao, Y. Q.*; Wo, H. L.*; Gu, Y. M.*; Zhang, X. W.*; Gu, Y. Q.*; Zheng, S. Y.*; Zhao, Y.*; Xu, G. Y.*; Lynn, J. W.*; Nakajima, Kenji; et al.

Science China; Physics, Mechanics & Astronomy, 64(3), p.237411_1 - 237411_6, 2021/03

 Times Cited Count:11 Percentile:69.72(Physics, Multidisciplinary)

Journal Articles

Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity

Wang, Y.*; Jia, G.*; Cui, X.*; Zhao, X.*; Zhang, Q.*; Gu, L.*; Zheng, L.*; Li, L. H.*; Wu, Q.*; Singh, D. J.*; et al.

Chem, 7(2), p.436 - 449, 2021/02

 Times Cited Count:258 Percentile:99.76(Chemistry, Multidisciplinary)

Journal Articles

General synthesis of single-atom catalysts for hydrogen evolution reactions and room-temperature Na-S batteries

Lai, W.-H.*; Wang, H.*; Zheng, L.*; Jiang, Q.*; Yan, Z.-C.*; Wang, L.*; Yoshikawa, Hirofumi*; Matsumura, Daiju; Sun, Q.*; Wang, Y.-X.*; et al.

Angewandte Chemie; International Edition, 59(49), p.22171 - 22178, 2020/12

 Times Cited Count:96 Percentile:95.70(Chemistry, Multidisciplinary)

Journal Articles

$$^{rm 208,207,206,nat}$$Pb(p,x)$$^{207}$$Bi and $$^{209}$$Bi(p,x)$$^{207}$$Bi excitation functions in the energy range of 0.04 - 2.6 GeV

Titarenko, Yu. E.*; Batyaev, V. F.*; Pavlov, K. V.*; Titarenko, A. Yu.*; Malinovskiy, S. V.*; Rogov, V. I.*; Zhivun, V. M.*; Kulevoy, T. V.*; Chauzova, M. V.*; Lushin, S. V.*; et al.

Nuclear Instruments and Methods in Physics Research A, 984, p.164635_1 - 164635_8, 2020/12

 Times Cited Count:4 Percentile:39.26(Instruments & Instrumentation)

The paper presents the $$^{207}$$Bi production cross-sections measured by the direct gamma-spectrometry technique in the samples of lead enriched with isotopes 208, 207 and 206, as well as in the samples of natural lead and bismuth, irradiated by protons of 11 energies in the range from 0.04 to 2.6 GeV. The obtained experimental results are compared with the previous measurements, with the TENDL-2019 data-library evaluations and the simulated data by means of the high-energy transport codes MCNP6.1 (CEM03.03), PHITS (INCL4.6/GEM), and Geant4 (INCL++/ABLA). The observed discrepancies between model predictions and experimental data are discussed.

Journal Articles

Distance-selected topochemical dehydro-diels-alder reaction of 1,4-Diphenylbutadiyne toward crystalline graphitic nanoribbons

Zhang, P.*; Tang, X.*; Wang, Y.*; Wang, X.*; Gao, D.*; Li, Y.*; Zheng, H.*; Wang, Y.*; Wang, X.*; Fu, R.*; et al.

Journal of the American Chemical Society, 142(41), p.17662 - 17669, 2020/10

 Times Cited Count:29 Percentile:76.69(Chemistry, Multidisciplinary)

Solid-state topochemical polymerization (SSTP) is a promising method to construct functional crystalline polymeric materials, but in contrast to various reactions that happen in solution, only very limited types of SSTP reactions are reported. Diels-Alder (DA) and dehydro-DA (DDA) reactions are textbook reactions for preparing six-membered rings in solution but are scarcely seen in solid-state synthesis. Here, using multiple cutting-edge techniques, we demonstrate that the solid 1,4-diphenylbutadiyne (DPB) undergoes a DDA reaction under 10-20 GPa with the phenyl as the dienophile. The crystal structure at the critical pressure shows that this reaction is "distance-selected". The distance of 3.2${AA}$ between the phenyl and the phenylethynyl facilitates the DDA reaction, while the distances for other DDA and 1,4-addition reactions are too large to allow the bonding. The obtained products are crystalline armchair graphitic nanoribbons, and hence our studies open a new route to construct the crystalline carbon materials with atomic-scale control.

Journal Articles

Ultra-fine CeO$$_{2}$$ particles triggered strong interaction with LaFeO$$_{3}$$ framework for total and preferential CO oxidation

Zheng, Y.*; Xiao, H.*; Li, K.*; Wang, Y.*; Li, Y.*; Wei, Y.*; Zhu, X.*; Li, H.-W.*; Matsumura, Daiju; Guo, B.*; et al.

ACS Applied Materials & Interfaces, 12(37), p.42274 - 42284, 2020/09

 Times Cited Count:26 Percentile:73.47(Nanoscience & Nanotechnology)

Journal Articles

First determination of Pu isotopes ($$^{239}$$Pu, $$^{240}$$Pu and $$^{241}$$Pu) in radioactive particles derived from Fukushima Daiichi Nuclear Power Plant accident

Igarashi, Junya*; Zheng, J.*; Zhang, Z.*; Ninomiya, Kazuhiko*; Satou, Yukihiko; Fukuda, Miho*; Ni, Y.*; Aono, Tatsuo*; Shinohara, Atsushi*

Scientific Reports (Internet), 9(1), p.11807_1 - 11807_10, 2019/08

 Times Cited Count:23 Percentile:62.75(Multidisciplinary Sciences)

Radioactive particles were released into the environment during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Many studies have been conducted to elucidate the chemical composition of released radioactive particles in order to understand their formation process. However, whether radioactive particles contain nuclear fuel radionuclides remains to be investigated. Here, we report the first determination of Pu isotopes in radioactive particles. To determine the Pu isotopes ($$^{239}$$Pu, $$^{240}$$Pu and $$^{241}$$Pu) in radioactive particles derived from the FDNPP accident which were free from the influence of global fallout, radiochemical analysis and inductively coupled plasma-mass spectrometry measurements were conducted. Radioactive particles derived from unit 1 and unit 2 or 3 were analyzed. For the radioactive particles derived from unit 1, activities of $$^{239+240}$$Pu and $$^{241}$$Pu were (1.70-7.06)$$times$$10$$^{-5}$$ Bq and (4.10-8.10)$$times$$10$$^{-3}$$ Bq, respectively and atom ratios of $$^{240}$$Pu/$$^{239}$$Pu and $$^{241}$$Pu/$$^{239}$$Pu were 0.330-0.415 and 0.162-0.178, respectively. These ratios were consistent with the simulation results from ORIGEN code and measurements from various environmental samples. In contrast, Pu was not detected in the radioactive particles derived from unit 2 or 3. The difference in Pu contents is clear evidence towards different formation processes of radioactive particles, and detailed formation processes can be investigated from Pu analysis.

Journal Articles

Pressure-induced Diels-Alder reactions in C$$_{6}$$H$$_{6}$$ - C$$_{6}$$F$$_{6}$$ cocrystal towards graphane structure

Wang, Y.*; Dong, X.*; Tang, X.*; Zheng, H.*; Li, K.*; Lin, X.*; Fang, L.*; Sun, G.*; Chen, X.*; Xie, L.*; et al.

Angewandte Chemie; International Edition, 58(5), p.1468 - 1473, 2019/01

 Times Cited Count:45 Percentile:82.40(Chemistry, Multidisciplinary)

Pressure-induced polymerization (PIP) of aromatics is a novel method to construct sp$$^{3}$$-carbon frameworks, and nanothreads with diamond-like structures were synthesized by compressing benzene and its derivatives. Here by compressing benzene-hexafluorobenzene cocrystal(CHCF), we identified H-F-substituted graphane with a layered structure in the PIP product. Based on the crystal structure determined from the in situ neutron diffraction and the intermediate products identified by the gas chromatography-mass spectrum, we found that at 20 GPa CHCF forms tilted columns with benzene and hexafluorobenzene stacked alternatively, which leads to a [4+2] polymer, and then transfers to short-range ordered hydrogenated-fluorinated graphane. The reaction process contains [4+2] Diels-Alder, retro-Diels-Alder, and 1-1' coupling, and the former is the key reaction in the PIP. Our studies confirmed the elemental reactions of the CHCF for the first time, which provides a novel insight into the PIP of aromatics.

Journal Articles

Phase transitions and polymerization of C$$_{6}$$H$$_{6}$$-C$$_{6}$$F$$_{6}$$ cocrystal under extreme conditions

Wang, Y.*; Wang, L.*; Zheng, H.*; Li, K.*; Andrzejewski, M.*; Hattori, Takanori; Sano, Asami; Katrusiak, A.*; Meng, Y.*; Liao, F.*; et al.

Journal of Physical Chemistry C, 120(51), p.29510 - 29519, 2016/12

 Times Cited Count:26 Percentile:61.93(Chemistry, Physical)

Pressure-induced polymerization (PIP) of aromatic molecules can generate saturated carbon nanostructures. As a strongly interacted $$pi$$-$$pi$$ stacking unit, the C$$_{6}$$H$$_{6}$$-C$$_{6}$$F$$_{6}$$ adduct is widely applied in supramolecular chemistry, and it provides a good preorganization for the PIP. Here we investigated the structural variation of C$$_{6}$$H$$_{6}$$-C$$_{6}$$F$$_{6}$$ cocrystal and the subsequent PIP process under high pressure. Four new molecular-complex phases V, VI, VII, and VIII have been identified and characterized by the in situ Raman, IR, synchrotron X-ray, and neutron diffraction. The phase V is different from the phases observed at low temperature, which has a tilted column structure. Phases VI and VII have a structure similar to phase V. Phase VIII polymerizes irreversibly upon compression above 25 GPa without any catalyst, producing sp$$^{3}$$(CH/F)$$_{n}$$ materials. The $$pi$$-$$pi$$ interaction is still dominant below 0.5 GPa but is most likely to be overstepped under further compression, which is important for discussing the supramolecular phase transition and the polymerization process.

Journal Articles

Mechanistic studies on lithium intercalation in a lithium-rich layered material using Li$$_{2}$$RuO$$_{3}$$ epitaxial film electrodes and ${{it in situ}}$ surface X-ray analysis

Taminato, So*; Hirayama, Masaaki*; Suzuki, Kota*; Kim, K.-S.*; Zheng, Y.*; Tamura, Kazuhisa; Mizuki, Junichiro; Kanno, Ryoji*

Journal of Materials Chemistry A, 2(34), p.17875 - 17882, 2014/11

 Times Cited Count:22 Percentile:55.14(Chemistry, Physical)

The surface structure of a lithium-rich layered material and its relation to intercalation properties were investigated by synchrotron X-ray surface structural analyses using Li$$_{2}$$RuO$$_{3}$$ epitaxial-film model electrodes with different lattice planes of (010) and (001). Electrochemical charge-discharge measurements confirmed reversible lithium intercalation activity through both planes, corresponding to three-dimensional lithium diffusion within the Li$$_{2}$$RuO$$_{3}$$. The (001) plane exhibited higher discharge capacities compared to the (010) plane under high rate operation (over 5 C). Direct observations of surface structural changes by ${{it in situ}}$ surface X-ray diffraction (XRD) and surface X-ray absorption near edge structure (XANES) established that an irreversible phase change occurs at the (010) surface during the first (de)intercalation process, whereas reversible structural changes take place at the (001) surface.

Journal Articles

In-beam $$gamma$$ spectroscopy of the even-even nucleus $$^{190}$$Pt

Li, G. S.*; Liu, M. L.*; Zhou, X. H.*; Zhang, Y. H.*; Liu, Y. X.*; Zhang, N. T.*; Hua, W.*; Zheng, Y. D.*; Fang, Y. D.*; Guo, S.*; et al.

Physical Review C, 89(5), p.054303_1 - 054303_9, 2014/05

 Times Cited Count:5 Percentile:36.87(Physics, Nuclear)

High-spin states of $$^{190}$$Pt have been reinvestigated using the $$^{176}$$Yb($$^{18}$$O, 4$$n$$) reaction at a beam energy of 88 MeV. The previously known positive parity band associated with the $$nu$$ $$i^{-2}_{13/2}$$ $$nu$$ $$h^{-1}_{9/2}$$ $$nu$$ $$j^{-1}$$ ($$nu j$$ being $$nu p_{3/2}$$ or $$nu f_{5/2}$$) configuration has been revised and extended significantly. A new negative parity band has been established and proposed to be based on the $$nu$$ $$i^{-3}_{13/2}$$ $$nu$$ $$j^{-1}$$ configuration. Possible structure evolution of the yrast line from predominantly vibrational to rotational with increasing spin is discussed with the help of E$$_gamma$$ over spin curves. Additionally, calculations of Total Routhian surfaces have been performed to investigate the band properties.

34 (Records 1-20 displayed on this page)