Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; Kofu, Maiko*; Nirei, Masami; Xu, J.*; Yin, W.*; Wang, F.*; et al.
National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12
Times Cited Count:7 Percentile:88.60(Multidisciplinary Sciences)Yang, Q.*; Yang, X.*; Wang, Y.*; Fei, Y.*; Li, F.*; Zheng, H.*; Li, K.*; Han, Y.*; Hattori, Takanori; Zhu, P.*; et al.
Nature Communications (Internet), 15, p.7778_1 - 7778_9, 2024/09
Times Cited Count:6 Percentile:84.39(Multidisciplinary Sciences)Luminescent materials that simultaneously embody bright singlet and triplet excitons hold great potential in optoelectronics, signage, and information encryption. However, achieving high-performance white-light emission is severely hampered by their inherent unbalanced contribution of fluorescence and phosphorescence. Herein, we address this challenge by pressure treatment engineering via hydrogen bonding cooperativity effect to realize the mixture of n--
transitions, where the triplet state emission was boosted from 7% to 40% in isophthalic acid (IPA). A superior white-light emission based on hybrid fluorescence and phosphorescence was harvested in pressure-treated IPA, and the photoluminescence quantum yield was increased to 75% from the initial 19% (blue-light emission). In-situ high-pressure IR spectra, X ray diffraction, and neutron diffraction reveal continuous strengthening of the hydrogen bonds with the increase of pressure. Furthermore, this enhanced hydrogen bond is retained down to the ambient conditions after pressure treatment, awarding the targeted IPA efficient intersystem crossing for balanced singlet/triplet excitons population and resulting in efficient white-light emission. This work not only proposes a route for brightening triplet states in organic small molecule, but also regulates the ratio of singlet and triplet excitons to construct high-performance white-light emission.
Ying, H.*; Yang, X.*; He, H.*; Yan, A.*; An, K.*; Ke, Y.*; Wu, Z.*; Tang, S.*; Zhang, Z.*; Dong, H.*; et al.
Scripta Materialia, 250, p.116181_1 - 116181_7, 2024/09
Times Cited Count:1 Percentile:54.79(Nanoscience & Nanotechnology)Ren, Q.*; Gupta, M. K.*; Jin, M.*; Ding, J.*; Wu, J.*; Chen, Z.*; Lin, S.*; Fabelo, O.*; Rodriguez-Velamazan, J. A.*; Kofu, Maiko; et al.
Nature Materials, 22(8), p.999 - 1006, 2023/08
Times Cited Count:69 Percentile:99.27(Chemistry, Physical)Zhang, W. Q.*; Yamaguchi, Toshio*; Fang, C. H.*; Yoshida, Koji*; Zhou, Y. Q.*; Zhu, F. Y.*; Machida, Shinichi*; Hattori, Takanori; Li, W.*
Journal of Molecular Liquids, 348, p.118080_1 - 118080_11, 2022/02
Times Cited Count:2 Percentile:16.89(Chemistry, Physical)The ion hydration and association and hydrogen-bonded water structure in an aqueous 3 mol/kg RbCl solution were investigated at 298 K/0.1 MPa, 298 K/1 GPa, 523 K/1 GPa, and 523 K/4 GPa by neutron diffraction combined with EPSR methods. The second hydration layer of Rb and Cl
becomes evident under elevated pressure and temperature conditions. The average oxygen coordination number of Rb
(Cl
) in the first hydration layer increases from 6.3 (5.9) ambient pressure to 8.9 (9.1) at 4 GPa, while decreasing coordination distance from 0.290 nm (0.322 nm) to 0.288 nm (0.314 nm). The orientation of the water dipole in the first solvation shell of Rb
and a central water molecule is sensitive to pressure, but that in the first solvation shell of Cl
does not change very much. The number of contact-ion pairs Rb
-Cl
decreases with elevated temperature and increases with elevated pressure. Water molecules are closely packed, and the tetrahedral hydrogen-bonded network of water molecules no longer exists in extreme conditions.
Deng, Z.*; Zhao, K.*; Gu, B.; Han, W.*; Zhu, J. L.*; Wang, X. C.*; Li, X.*; Liu, Q. Q.*; Yu, R. C.*; Goko, Tatsuo*; et al.
Physical Review B, 88(8), p.081203_1 - 081203_5, 2013/08
Times Cited Count:75 Percentile:91.57(Materials Science, Multidisciplinary)Deng, Z.*; Jin, C. Q.*; Liu, Q. Q.*; Wang, X. C.*; Zhu, J. L.*; Feng, S. M.*; Chen, L. C.*; Yu, R. C.*; Arguello, C.*; Goko, Tatsuo*; et al.
Nature Communications (Internet), 2, p.1425_1 - 1425_5, 2011/08
Times Cited Count:168 Percentile:93.60(Multidisciplinary Sciences)In a prototypical ferromagnet (Ga,Mn)As based on a III-V semiconductor, substitution of divalent Mn atoms into trivalent Ga sites leads to severely limited chemical solubility and metastable specimens available only as thin films. The doping of hole carriers via (Ga,Mn) substitution also prohibits electron doping. To overcome these difficulties, Masek et al. theoretically proposed systems based on a I-II-V semiconductor LiZnAs, where isovalent (Zn,Mn) substitution is decoupled from carrier doping with excess/deficient Li concentrations. Here we show successful synthesis of Li(Zn
Mn
)As in bulk materials. We reported that ferromagnetism with a critical temperature of up to 50 K is observed in nominally Li-excess compounds, which have p-type carriers.
Kameshima, Takashi; Kotaki, Hideyuki; Kando, Masaki; Daito, Izuru; Kawase, Keigo; Fukuda, Yuji; Chen, L. M.*; Homma, Takayuki; Kondo, Shuji; Esirkepov, T. Z.; et al.
no journal, ,
The acceleration method of laser plasma electron acceleration has very strong electric field, however, the acceleration length is veryshort. Hence, the energy gain of electron beams were confined to be approximately 100 MeV. Recently, this problem was solved by using discharge capillary. The feature of plasma was used that high dense plasma has low refractive index. Distributing plasma inside capillary as low dense plasma is in the center of capillary and high dense plasma is in the external side of capillary can make a laser pulse propaget inside capillary with initial focal spot size. Experiments with capillary were performed in China Academy of Engineering Physics (CAEP) and Japan Atomic Energy Agency (JAEA). We obtained the results of 4.4 J laser pulse optical guiding in 4 cm capillary and 0.56 GeV electron production in CAEP in 2006, and 1 J laser pulse optical guiding in 4 cm capillary and electron beams productions.