Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Watanabe, Masao; Nojiri, Hiroyuki*
Journal of Neutron Research, 21(1-2), p.39 - 45, 2019/05
Magnetic field acts directly on the spin and the orbital motion of electron in the material and interesting quantum phenomena and phase transition are found in high magnetic field. Recently, experimental equipments using neutron beams in high magnetic field have been rapidly developed. For example, superconducting DC magnet up to 17 T has developed for neutron scattering experiments. Although the sample environment team in the MLF have several DC superconducting magnets up to 7 T as a sample environment apparatus, some users have requested the preparation of higher field magnets. However, another magnet technology is needed to generate higher than 20 T. However, it is difficult to construct such a large system in the MLF from the point of view of construction space. It is practical to employ a pulsed magnetic field as it enables operation of smaller energy as well as downsizing of the instruments. Therefore, we have been developed a compact and movable pulsed magnet system up to 30 T.
Kawamura, Seiko; Takahashi, Ryuta*; Ishikado, Motoyuki*; Yamauchi, Yasuhiro*; Nakamura, Masatoshi*; Ouchi, Keiichi*; Kira, Hiroshi*; Kambara, Wataru*; Aoyama, Kazuhiro*; Sakaguchi, Yoshifumi*; et al.
Journal of Neutron Research, 21(1-2), p.17 - 22, 2019/05
The Cryogenics and Magnets group in the Sample Environment team is responsible for operation of cryostats and magnets for user's experiments at the MLF in J-PARC. We have introduced a top-loading He cryostat, a bottom-loading
He cryostat, a dilution refrigerator insert and a superconducting magnet. The frequency of use of them dramatically becomes higher in these two years, as the beam power and the number of proposal increase. To respond such situation, we have made efforts to enhance performance of these equipment as follows. The
He cryostat originally involves an operation software for automatic initial cooling down to the base temperature and automatic re-charge of
He. Recently we made an additional program for automatic temperature control with only the sorb heater. Last year, a new outer vacuum chamber of the magnet with an oscillating radial collimator (ORC) was fabricated. The data quality was drastically improved by introducing this ORC so that the magnet can be used even for the inelastic neutron scattering experiments.
Oku, Takayuki; Watanabe, Masao; Sakaguchi, Yoshifumi*; Kawamura, Seiko; Takahashi, Ryuta*; Yamauchi, Yasuhiro*; Nakamura, Masatoshi*; Ishikado, Motoyuki*; Ouchi, Keiichi*; Arima, Hiroshi*; et al.
no journal, ,
Sample environment team at the Materials and Life Science Experimental Facility in J-PARC has worked on development and operation of cryogenics, magnets, high temperature, high pressure, soft matter related items and special environment including pulsed magnets, light irradiators and He-3 spin filters. In the talk, our status is presented, and issues are addressed.