Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hu, X.*; Fujita, Yoshitaka; Tsuchiya, Kunihiko; Fukutani, Satoshi*; Hori, Junichi*; Suzuki, Tatsuya*
Journal of Radioanalytical and Nuclear Chemistry, 333(11), p.6057 - 6063, 2024/05
Times Cited Count:0 Percentile:0.00(Chemistry, Analytical)no abstracts in English
Takaki, Naoyuki*; Iwahashi, Daiki*; Sasaki, Yuto*; Maeda, Shigetaka
no journal, ,
The production technology of medical radioisotopes (RI) using existing nuclear fission reactors has been studied to improve/achieve their domestic preparedness in Japan. The target nuclides currently considered in our project are Mo/Tc which is the most commonly used ones in medical diagnosis and Ac-225 which is recently known as effective alpha emitting nuclide for targeted alpha-particle therapy. Existing fission reactors, PWRs and Joyo, have potentials to work as excellent facilities for medical isotope production, as by-products of heat/electricity generation without consuming electricity and need for new plant construction.
Sasaki, Yuto; Iwahashi, Daiki*; Maeda, Shigetaka; Takaki, Naoyuki*
no journal, ,
Ac-225 is attracting attention as an alpha emitting medical radioisotope. Since its demand is expected to increase, domestic production of Ac-225 is required from the viewpoint of medical research and economic security of Japan. To establish the technical bases for the Ac-225 production, JAEA has evaluated the radioactivity can be produced in the experimental fast reactor Joyo and designed the concept that upgrades the existing facilities for transporting the irradiated target from Joyo to a neighboring PIE facility rapidly. This study has revealed that Joyo can sufficiently produce Ac-225 as a raw material for pharmaceuticals.