Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fukano, Yoshitaka
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 12 Pages, 2016/10
Probabilistic and deterministic safety assessments and experimental studies on local fault (LF) propagation in sodium-cooled fast reactors (SFRs) have been performed in many countries because LFs have been historically considered as one of the possible causes of severe accidents. Adventitious fuel pin failures have been considered to be the most dominant initiators of LFs in these probabilistic assessments because of its high frequency of occurrence during reactor operation and possibility of subsequent pin-to-pin failure propagation. The four possible mechanisms of fuel element failure propagation from adventitious fuel pin failure (FEFPA) were identified in the past study. All the mechanisms for FEFPA analysis including thermal, mechanical and chemical propagation were modeled into a safety assessment code which was applicable to arbitrary SFRs. Safety analyses on FEFPA of Japanese experimental fast reactor (JOYO), Japanese prototype fast breeder reactor (Monju), Japanese prototype fast breeder reactor with upgraded reactor core (Upgraded Monju) and Japan sodium-cooled fast reactor (JSFR) were performed using this methodology. Although analytical results were different owing to the different core designs in four SFRs, it was clarified in this study that FEFPA was highly unlikely in these SFRs. These results also suggest future possibility of long-term run-beyond-cladding-breach operation which would enhance the economic efficiency in SFRs.
Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 12 Pages, 2016/10
This paper describes mainly volcanic margin assessment methodology development in addition to the project overview. The volcanic tephra could potentially clog filters of air-intakes that need the decay heat removal. The filter clogging can be calculated by atmospheric concentration and fallout duration of the volcanic tephra and also suction flow rate of each component. In this paper, the margin was defined as a grace period to a filter failure limit. Consideration is needed only when the grace period is shorter than the fallout duration. The margin by component was calculated using the filter failure limit and the suction flow rate of each component. The margin by sequence was evaluated based on an event tree and the margin by component. An accident management strategy was also suggested to extend the margin; for instance, manual trip of the forced circulation operation, sequential operation of three air coolers, and covering with pre-filter.
Matsuba, Kenichi; Isozaki, Mikio; Kamiyama, Kenji; Suzuki, Toru; Tobita, Yoshiharu
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 8 Pages, 2016/10
In order to evaluate the distance for fragmentation of molten core material discharged into the lower sodium plenum during core disruptive accidents in sodium-cooled fast reactors, experiments with simulated molten materials and coolants (water, sodium) was carried out, where an empirical correlation of the distance for fragmentation was developed. The empirical correlation developed by this study showed a good agreement with the measurement results obtained by the present experiments. It was found that in order to well-predict the distance for fragmentation in sodium, thermal phenomena, such as sodium boiling and resultant vapor expansion, needed to be considered.
Sheikh, M. A. R.*; Son, E.*; Kamiyama, Motoki*; Morioka, Toru*; Matsumoto, Tatsuya*; Morita, Koji*; Matsuba, Kenichi; Kamiyama, Kenji; Suzuki, Toru
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 12 Pages, 2016/10
This paper reports an experimental evaluation on debris bed formation characteristics in core-disruptive accidents cogitating the heterogeneous mixture of particles. In the present study, to appraise the characteristics, a series of experiments was accomplished by gravity driven discharge of solid binary mixtures of particles as simulant debris from a nozzle into a quiescent water pool in isothermal condition at room temperature. Currently, two types of spherical particles, namely Alumina and stainless steel with different diameter are employed to study the effect of key experimental parameters on bed mound shape. In experimental investigation both convex and concave mound shapes were perceived based on the effect of particle size and nozzle diameter. The present outcomes could be useful to validate numerical models and simulation codes of particulate debris sedimentation.
Jiao, L.; Liu, W.; Nagatake, Taku; Uesawa, Shinichiro; Shibata, Mitsuhiko; Yoshida, Hiroyuki; Takase, Kazuyuki*
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 11 Pages, 2016/10
Liu, W.; Jiao, L.; Nagatake, Taku; Shibata, Mitsuhiko; Komatsu, Masao*; Takase, Kazuyuki*; Yoshida, Hiroyuki
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 10 Pages, 2016/10
To contribute the clarification of the Fukushima Daiichi Accident, Japan Atomic Energy Agency (JAEA) has been performed experiments to obtain void fraction distribution data, including detailed bubble information such as bubble velocity and size, in steam-water two-phase flow in rod bundle geometry under high pressure and high temperature condition, focusing on low flow rate at the core natural circulation flow condition after the reactor scram. In this research, experimental apparatus for measuring void fraction distribution in the 44 rod bundle was constructed. To measure the void fraction distribution under high pressure and high temperature condition (up to 2.8 MPa, 232
C), two wire mesh sensors (WMSs) were installed. To confirm the applicability of the installed WMSs and the measuring system for two-phase flow in rod bundle, experiments in air-water two-phase flow under atmospheric pressure and room temperature were performed. As a result, it was confirmed that the installed WMSs can be applicable to the two-phase flow in rod bundle. Measured results, such as instantaneous and time-averaged void fraction distribution in the rod bundle, average void fraction across the cross section of the flow channel, bubble length and velocity, were also reported.
Shibamoto, Yasuteru; Yonomoto, Taisuke; Ishigaki, Masahiro; Abe, Satoshi
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 10 Pages, 2016/10
Yoshikawa, Ryuji; Tanaka, Masaaki; Ohshima, Hiroyuki; Imai, Yasutomo*
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 12 Pages, 2016/10
A sodium-water coupled thermal-hydraulics simulation code TSG has been developed for numerical estimation of three-dimensional thermal-hydraulic phenomena in the straight-tube steam generator. The water analysis module was developed by using the parallel channel model of heat transfer tubes, and the sodium analysis module was developed by using porous body approach. As the first step of validation, simulation results by TSG were compared with the measured data of 1MWt SG experiments under steady state conditions. Through the numerical simulation, the coupled simulation method used in TSG was validated and applicability of TSG to simulate thermal-hydraulics of the straight tube SG in the steady state was confirmed.
Wan, T.; Obayashi, Hironari; Sasa, Toshinobu
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 12 Pages, 2016/10
Obayashi, Hironari; Hirabayashi, Masaru; Sasa, Toshinobu; Ara, Kuniaki
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 10 Pages, 2016/10
Tanaka, Masaaki
no journal, ,
A procedure called as V2UP (Verification and Validation plus Uncertainty quantification and Prediction) was made by referring to the existing guidelines on V&V and the methodologies of the safety assessment (CSAU, ISTIR, EMDAP). The V2UP consisted of five components as follows: (1) phenomena analysis with the Phenomena Identification and Ranking Table (PIRT) method, (2) implementation of the V&V, (3) design and rearrangement of experiments for the V&V, (4) uncertainty quantification in each problem and integration of uncertainties and (5) numerical prediction (estimation) for the target issue. Although the complete application of the procedure has not been performed at this moment, a flow chart of the V2UP procedure was described in this paper with recent results of the examinations.