Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Oka, Hiroshi; Tanno, Takashi; Otsuka, Satoshi; Yano, Yasuhide; Uwaba, Tomoyuki; Kaito, Takeji; Onuma, Masato*
Nuclear Materials and Energy (Internet), 9, p.346 - 352, 2016/12
Times Cited Count:21 Percentile:89.88(Nuclear Science & Technology)Furukawa, Tomohiro; Hirakawa, Yasushi; Kondo, Hiroo; Kanemura, Takuji
Nuclear Materials and Energy (Internet), 9, p.286 - 291, 2016/12
Times Cited Count:3 Percentile:29.46(Nuclear Science & Technology)In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide) were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.
Takeuchi, Tomoaki; Nakano, Hiroko; Uehara, Toshiaki; Tsuchiya, Kunihiko
Nuclear Materials and Energy (Internet), 9, p.451 - 454, 2016/12
Times Cited Count:1 Percentile:11.13(Nuclear Science & Technology)no abstracts in English
Yano, Yasuhide; Tanno, Takashi; Sekio, Yoshihiro; Oka, Hiroshi; Otsuka, Satoshi; Uwaba, Tomoyuki; Kaito, Takeji
Nuclear Materials and Energy (Internet), 9, p.324 - 330, 2016/12
Times Cited Count:14 Percentile:80.86(Nuclear Science & Technology)Tanno, Takashi; Yano, Yasuhide; Oka, Hiroshi; Otsuka, Satoshi; Uwaba, Tomoyuki; Kaito, Takeji
Nuclear Materials and Energy (Internet), 9, p.353 - 359, 2016/12
Times Cited Count:9 Percentile:66.67(Nuclear Science & Technology)Materials for core components of fusion reactors and fast reactors, such as blankets and fuel cladding tubes, must be excellent in high temperature strength and irradiation resistance because they will be exposed to high heat flux and heavy neutron irradiation. Oxide dispersion strengthened (ODS) steels have been developing as the candidate material. Japan Atomic Energy Agency (JAEA) have been developing 9 and 11 Chromium (Cr) ODS steels for advanced fast reactor cladding tubes. The JAEA 11Cr-ODS steels were rolled in order to evaluate their anisotropy. Tensile tests and creep tests of them were carried out at 700 C in longitudinal and transverse orientation. The anisotropy of tensile strength was negligible, though that of creep strength was distinct. The observation results and chemical composition analysis suggested that the cause of the anisotropy in creep strength was prior powder boundary including Ti-rich precipitates.
Ozawa, Kazumi; Koyanagi, Takaaki*; Nozawa, Takashi; Kato, Yutai*; Kondo, Sosuke*; Tanigawa, Hiroyasu; Snead, L. L.*
no journal, ,
A silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a promising candidate material for an advanced fusion DEMO blanket. High-dose irradiation experiments were performed with our special focuses on understanding; (1) integrity of the Hi-Nicalon Type-S (HNLS) composites, (2) functionality of thin pyrocarbon (PyC) /SiC multilayer, and (3) clarifying the mechanism underlying degradation, as feedback to R&D on SiC/SiC composites. The materials used in this study were plain-weave HNLS composites produced via the chemical vapor infiltration process. Neutron irradiation was conducted in the HFIR at ORNL. The peak neutron fluence was ~1.010
n/m
(E
0.1 MeV, equivalent to ~100 dpa) at nominal irradiation temperatures of 300, 500, and 800
C. Results of post irradiation experiments including 1/4-four-point flexural tests, SEM, and TEM observation were reported.
Suzudo, Tomoaki
no journal, ,
Tungsten is expected to be a promising plasma-facing material for future fusion devices, but radiation-induced precipitation (RIP), which leads the material to hardening, is a concern at their practical use. One of the keys to accurate prediction of the emergence of RIP is migration of solute atoms, rhenium and osmium, that are produced by nuclear transmutation through irradiation. We conduct numerical simulations using an ab initio informed atomic kinetic Monte Carlo method and investigate the migration of these solute atoms in the form of tungsten-rhenium and tungsten-osmium mixed dumbbells, considered to be the most efficient "carriers" of the solute atoms. We find that the low rotation energy barrier of these mixed dumbbells leading to three-dimensional migration. The result also suggests that, although these dumbbells have three-dimensional motion, one cannot simply reduce their migration behavior to that of vacancy-like spherical objects.