Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shiba, Kiyoyuki; Tanigawa, Hiroyasu; Hirose, Takanori; Sakasegawa, Hideo; Jitsukawa, Shiro
Fusion Engineering and Design, 86(12), p.2895 - 2899, 2011/12
Times Cited Count:45 Percentile:93.86(Nuclear Science & Technology)Aging properties of reduced activation ferritic/martensitic steel F82H was researched at temperature ranging from 400
C to 650
C up to 100,000 hr. Microstructure, tensile, and Charpy properties were carried out. Laves was found at temperatures between 550 and 650
C and M
C carbides were found at the temperatures between 500 and 600
C over 10,000 hr. These precipitates caused degradation in toughness, especially at temperatures ranging from 550
C to 650
C. Tensile properties do not have serious aging effect, except for 650
C, which caused large softening even after 10.000 hr. Increase of precipitates also causes some degradation in ductility, but it is not critical. Large increase in DBTT caused by the large Laves phase precipitation at grain boundary was observed in the 650
C aging. Laves precipitates at grain boundary also degrades the USE of the aged materials. These aging test results provide F82H can be used up to 30,000 hr at 550
C.
Nishitani, Takeo; Yamanishi, Toshihiko; Tanigawa, Hiroyasu; Nozawa, Takashi; Nakamichi, Masaru; Hoshino, Tsuyoshi; Koyama, Akira*; Kimura, Akihiko*; Hinoki, Tatsuya*; Shikama, Tatsuo*
Fusion Engineering and Design, 86(12), p.2924 - 2927, 2011/12
Times Cited Count:7 Percentile:46.23(Nuclear Science & Technology)Several technical R&D activities related to the blanket materials are newly launched as a part of the Broader Approach (BA) activities, which was initiated by the EU and Japan. According to the common interests of these parties for DEMO, R&Ds on reduced activation ferritic/martensitic (RAFM) steels as structural material, SiCf/SiC composites as a flow channel insert material and/or alternative structural material, advanced tritium breeders and neutron multipliers, and tritium technology are carried out through the BA DEMO R&D program, in order to establish the technical bases on the blanket materials and the tritium technology required for DEMO design. This paper describes overall schedule of those R&D activities and recent progress in Japan carried out by JAEA as the domestic implementing agency on BA, collaborating with Japanese universities and other research institutes.
Kogawara, Takafumi; Wakai, Eiichi; Kikuchi, Takayuki; Yamamoto, Michiyoshi; Molla, J.*
Fusion Engineering and Design, 86(12), p.2904 - 2907, 2011/12
Times Cited Count:3 Percentile:24.29(Nuclear Science & Technology)no abstracts in English
Chida, Yutaka; Iguchi, Masahide; Takano, Katsutoshi; Nakajima, Hideo; Osemochi, Koichi*; Niimi, Kenichiro*; Tokai, Daisuke*; Gallix, R.*
Fusion Engineering and Design, 86(12), p.2900 - 2903, 2011/12
Times Cited Count:10 Percentile:57.82(Nuclear Science & Technology)TF coil structures, which support large electromagnetic force generated in TF coils under the cryogenic temperature (about 4K), are the mega welding structures composed of coil case and support structures made of high strength and high toughness stainless steel. JAEA started the study on welding trials for heavy thickness materials since 2008 and is planning of full scale mock-up model fabrication for main sub-components (1 set of inboard side and 1set of outboard side) in 2010 in order to investigate the technical issues for manufacturing of TF coil structures. This paper introduces the results on welding trials and status of full scale mock-up model fabrication to confirm the validity of welding technology and manufacturing design before fabricating actual products.
Someya, Yoji; Takase, Haruhiko; Uto, Hiroyasu; Tobita, Kenji; Liu, C.; Asakura, Nobuyuki
Fusion Engineering and Design, 86(9-11), p.2269 - 2272, 2011/11
Times Cited Count:37 Percentile:91.56(Nuclear Science & Technology)Conceptual design of a tritium-breeding blanket for SlimCS has been studied. The blanket structure with neutron multiplier Be-plate was designed to be as thin as possible with keeping high Tritium Breeding Ratio (TBR). However, a structure of the blanket is complexity and the manufacture of the blanket is difficult from the viewpoint of engineering. Therefore, simplification of blanket structure is necessary for SlimCS. In this paper, we propose a simple blanket structure without decreasing the net TBR below 1.05. The proposed blanket structure is mixed Li
SiO
pebbles or Li
O pebbles for the tritium breeding and Be
Ti pebbles for the neutron multiplication and these pebbles are filled in the blanket. ANIHEAT code with the nuclear data library FENDL-2.0 was used for the calculations of the neutronics and thermal analyses. As a result, it is shown that Li
O pebbles blanket mixed with Be
Ti pebbles is the most effective and the TBR is greater than 1.05.
Matsui, Kunihiro; Koizumi, Norikiyo; Hemmi, Tsutomu; Takano, Katsutoshi; Nakajima, Hideo; Osemochi, Koichi*; Savary, F.*
Fusion Engineering and Design, 86(6-8), p.1531 - 1536, 2011/10
Times Cited Count:2 Percentile:17.23(Nuclear Science & Technology)The magnet system for ITER comprises 18 Toroidal Field (TF) Coils using Nb
Sn cable-in-conduit superconductor, which operate at 4.5 K in supercritical helium. Japan Atomic Energy Agency (JAEA) is responsible for the procurement of 9 TF coils as Japanese Domestic Agency (JADA). Before launching the procurement of these coils, reduced and full-scale trials will be performed to determine and optimize the manufacturing process of a TF coil. During the manufacture of the TF coil, heat-treated superconducting cable-in-conduit conductor, whose length may vary during heat treatment, shall be inserted in the grooves of the radial plate (RP), which is part of the mechanical structure supporting the large electromagnetic forces that are of the order of 800 kN/m. The RP also enhance reliability of the electrical insulation that will be tested up to 19 kV DC and 2.5 kV AC for the winding pack to ground. Very accurate tolerances, of the order of 0.01% on the length of the RP grooves and of the wound conductor, are required to enable the insertion of the conductor. Therefore, the development of suitable manufacturing techniques for the RP and for the winding operation is essential to achieve this requirement. JAEA has contracted companies for fabrication trials of a full-scale RP and winding trials of a one-third scale double pancake to verify feasibility of the required tolerances from an industrial view point. Prior to these trials, JAEA developed a preliminary manufacturing plan and then, industry will carry out small-scale trials to demonstrate applicability of the preliminary manufacturing plan before making the reduced and full-scale trials. The small scale trials will include the cover plate welding with the laser welding, the impregnation using the acryl and metal models, and, the mechanical test and the trail bending of the TF conductor. The results of the small-scale trials and progress on the reduced and full-scale trials are presented in this paper.
Nakamura, Kazuyuki; Furukawa, Tomohiro; Hirakawa, Yasushi; Kanemura, Takuji; Kondo, Hiroo; Ida, Mizuho; Niitsuma, Shigeto; Otaka, Masahiko; Watanabe, Kazuyoshi; Horiike, Hiroshi*; et al.
Fusion Engineering and Design, 86(9-11), p.2491 - 2494, 2011/10
Times Cited Count:11 Percentile:60.99(Nuclear Science & Technology)In IFMIF/EVEDA, tasks for lithium target system are shared to 5 validation tasks (LF1-5) and a design task (LF6). The purpose of LF1 task is to construct and operate the EVEDA lithium test loop, and JAEA has a main responsibility to the performance of the Li test loop. LF2 is a task for the diagnostics of the Li test loop and IFMIF design. Basic research for the diagnostics equipment has been completed, and the construction for the Li test loop will be finished before March in 2011. LF4 is a task for the purification systems with nitrogen and hydrogen. Basic research for the purification equipment has been completed, and the construction of the nitrogen system for the Li test loop will be finished before March in 2011. LF5 is a task for the remote handling system with the target assembly. JAEA has an idea to use the laser beam for cutting and welding of the lip part of the flanges. LF6 is a task for the design of the IFMIF based on the validation experiments of LF1-5.
Iwai, Yasunori; Sato, Katsumi; Yamanishi, Toshihiko
Fusion Engineering and Design, 86(9-11), p.2164 - 2167, 2011/10
Times Cited Count:19 Percentile:77.89(Nuclear Science & Technology)We have developed the hydrophobic Pt catalysts applicable for tritium oxidation in the presence of saturated water vapor at room temperature. A new type of hydrophobic catalyst, Pt/ASDBC, has been prepared by dipositing platinum on alkyl-styrene diviyl-benzene copolymer (ASDBC). Pt/ASDBC is more hydrophobic than Pt/SDBC that is a promising catalyst for the water detritiation system. The deposited platinum used to prepare Pt/ASDBC catalyst was 1.0 g/L. The value was approximately half of a commercial Japanese Pt/SDBC catalyst. Tritium oxidation tests of the catalysts using 3 GBq/m
of tritium were performed in the absence/presence of saturated water vapor at room temperature. Tritium oxidation sufficient for room temperature recombiner was demonstrated using Pt/ASDBC catalyst.
Hoshino, Tsuyoshi; Oikawa, Fumiaki
Fusion Engineering and Design, 86(9-11), p.2172 - 2175, 2011/10
Times Cited Count:40 Percentile:92.66(Nuclear Science & Technology)Lithium titanate (Li
TiO
) is one of the most promising candidates among tritium breeding materials because of its good tritium release characteristics. However, the mass of Li
TiO
decreased with time in a hydrogen atmosphere by Li evaporation and with Li burn up. In order to prevent the mass decrease at high temperatures, Li
TiO
with added Li have been developed as one of advanced tritium breeders. We have been promoting the development of fabrication technique of Li
TiO
pebbles by the sol-gel method. The fabrication techniques of advanced tritium breeder pebbles have not been established for large quantities. Therefore, trial fabrication tests of advanced breeder pebbles were carried out using previous sol-gel method. The diameter of the pebbles is 1.18 mm, and the sphericity is 1.04. It is expected that an advanced tritium breeder with added Li will be stable under operating conditions, namely in a neutron environment at a high temperatures. Thus, these results show that the pebble fabrication using the sol-gel method is a promising production technique for mass production of the advanced tritium breeder pebbles.
Hoshino, Tsuyoshi; Terai, Takayuki*
Fusion Engineering and Design, 86(9-11), p.2168 - 2171, 2011/10
Times Cited Count:62 Percentile:96.72(Nuclear Science & Technology)The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 (
Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.%
Li. In Japan, new lithium isotope separation technique using ionic-liquid impregnated organic membranes have been developed. The improvement in the durability of the ionic-liquid impregnated organic membrane is one of the main issues for stable, long-term operation of electrodialysis cells while maintaining good performance. Therefore, we developed highly-durable ionic-liquid impregnated organic membrane. Both ends of the ionic-liquid impregnated organic membrane were covered by a nafion 324 overcoat to prevent the outflow of the ionic liquid. The transmission of Lithium aqueous solution after 10 hours under the highly-durable ionic-liquid impregnated organic membrane is almost 13%. So this highly-durable ionic-liquid impregnated organic membrane for long operating of electrodialysis cells has been developed through successful prevention of ion liquid dissolution.
Hamada, Kazuya; Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Koizumi, Norikiyo; Nakajima, Hideo; et al.
Fusion Engineering and Design, 86(6-8), p.1506 - 1510, 2011/10
Times Cited Count:12 Percentile:63.78(Nuclear Science & Technology)Japan Atomic Energy Agency has a responsibility for procurement of the ITER toroidal field coil conductors as Japanese Domestic Agency (JADA) of the ITER project. The TF conductor is a circular shaped cable-in-conduit conductor, which is composed of cable and stainless steel conduit (jacket). The outer diameter and wall thickness of jacket are 43.7mm and 2mm, respectively. The cable consists of 900 Nb
Sn superconducting strands and 522 Cu strands. The length of TF conductor is 780m in maximum. Preparation of conductor fabrication was completed in December 2009. And then, to demonstrate a conductor manufacturing procedure, JADA fabricated 780m-long Cu dummy conductor as a process qualification. Finally, the 780m-long Cu dummy conductor has been successfully completed, ahead of other domestic agencies that are in charge of TF conductor procurement. Since all of manufacturing processes have been qualified, JADA started to fabricate superconducting conductors for TF coils.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Ida, Mizuho; Yagi, Juro*; Suzuki, Akihiro*; Fukada, Satoshi*; Matsushita, Izuru*; Nakamura, Kazuyuki
Fusion Engineering and Design, 86(9-11), p.2437 - 2441, 2011/10
Times Cited Count:24 Percentile:83.60(Nuclear Science & Technology)Engineering Validation and Engineering Design Activities (EVEDA) for The International Fusion Materials Irradiation Facility (IFMIF) were started from July 2007 under an international agreement called ITER Broader Approach. As a major Japanese activity, EVEDA Li test loop (ELTL) to simulate hydraulic and impurity conditions of IFMIF has already designed and is under construction, in which feasibility of hydraulic stability of the liquid Li target, the purification systems of hot traps are major key issues to be validated in this loop. This paper focuses on the purification systems of the ELTL. Design of a cold trap and hot traps are discussed in this paper.
Watanabe, Kazuyoshi; Ida, Mizuho; Kondo, Hiroo; Nakamura, Kazuyuki; Wakai, Eiichi
Fusion Engineering and Design, 86(9-11), p.2482 - 2486, 2011/10
Times Cited Count:2 Percentile:17.23(Nuclear Science & Technology)The Engineering Validation and Engineering Design Activities (EVEDA) of the International Fusion Materials Irradiation Facility (IFMIF) are in progress under the Broader Approach (BA) Agreement. As a part of this engineering design, we carried out thermo-structural analysis of the back plate in the IFMIF target. In this analysis, the target assembly of the integrated back plate option was modeled with the nuclear heating to simulate the IFMIF usual operation. The calculation parameters were thermal boundary conditions of a mechanical joint between the target assembly and the beam duct. The calculation results showed the influence of parameters on thermal stress was small. The maximum von Mises stresses occurred at the back plate center and those values, 204 - 218 MPa were lower than half of the yield strength of F82H (455 MPa). The maximum thermal deformations occurred at the same place and those values, about 0.3 mm will be important input parameter for the Li flow stability analysis.
Hirose, Takanori; Tanigawa, Hisashi; Yoshikawa, Akira; Seki, Yohji; Tsuru, Daigo; Yokoyama, Kenji; Ezato, Koichiro; Suzuki, Satoshi; Enoeda, Mikio; Akiba, Masato
Fusion Engineering and Design, 86(9-11), p.2265 - 2268, 2011/10
Times Cited Count:5 Percentile:36.29(Nuclear Science & Technology)As one of the most important fabrication technologies of the WCCB TBM, Hot Isostatic Pressing (HIP) joining technology was selected to fabricate the first wall with built-in cooling channel structure made of reduced activation martensitic/ferritic steel, F82H. By using developed HIP technology, a real scale TBM first wall mockup was successfully fabricated. High heat flux test of the fabricated mockup showed the feasibility to with the equivalent conditions of the WCCB TBM operation. The breeder pebble box was successfully fabricated with thin wall cooling pipes and thin plate sleds by Laser welding. With respect to the side walls with built in cooling channels were also fabricated using drilling technology. Assembling of the first wall and side walls is one of the critical fabrication processes of the fabrication of the TBM structure. By using a F82H first wall mockup and side wall mockups, assembling process was demonstrated successfully by Electron Beam welding.
Kondo, Keitaro; Yagi, Takahiro*; Ochiai, Kentaro; Sato, Satoshi; Takakura, Kosuke; Onishi, Seiki; Konno, Chikara
Fusion Engineering and Design, 86(9-11), p.2184 - 2187, 2011/10
Times Cited Count:2 Percentile:17.23(Nuclear Science & Technology)In the neutronics experiment for the ITER test blanket module with a
Li-enriched Li
TiO
layer and a beryllium layer conducted at the FNS facility of Japan Atomic Energy Agency, the calculated tritium production rate (TPR) was by approximately 10% larger than the measured one only when a neutron source reflector composed of SS316 was attached. On the other hand, the influence of the reflector on the TPR prediction accuracy was not seen in the recent blanket experiment with a natural Li
TiO
layer, beryllium layers and the reflector. We investigated the former experiment in detail, and found an unphysical tendency in the measured TPR distribution. In order to clarify whether the deterioration of the TPR prediction accuracy originates from the reflector or not, we have conducted the same experiment as the previous experiment again. In the present experiment, the measured TPR distribution inside the
Li-enriched Li
TiO
layer well agreed with the calculated one within an estimated experimental error of 6%. We conclude that the overestimation of TPR observed in the previous experiment would be due to some experimental errors and that the TPR prediction accuracy is good even in the case with the reflector.
Nakamichi, Masaru; Yonehara, Kazuo; Wakai, Daisuke
Fusion Engineering and Design, 86(9-11), p.2262 - 2264, 2011/10
Times Cited Count:28 Percentile:86.90(Nuclear Science & Technology)
-ray and neutron area monitoring system for the IFMIF/EVEDA accelerator buildingTakahashi, Hiroki; Maebara, Sunao; Kojima, Toshiyuki; Kubo, Takashi; Sakaki, Hironao; Takeuchi, Hiroshi; Shidara, Hiroyuki; Hirabayashi, Keiichi*; Hidaka, Kosuke*; Shigyo, Nobuhiro*; et al.
Fusion Engineering and Design, 86(9-11), p.2795 - 2798, 2011/10
Times Cited Count:2 Percentile:17.23(Nuclear Science & Technology)In the IFMIF/EVEDA accelerator, the engineering validation up to 9 MeV by employing the deuteron beam of 125 mA are planning at the BA site in Rokkasho, Aomori, Japan, the personnel protection system (PPS) is indispensable. The PPS inhibit the beam by receiving the interlock signal from the
-ray and neutron monitoring system. The
-ray and neutron detection level which is planned to be adopted are "80 keV to 1.5 MeV (
-ray)" and "0.025 eV to 15 MeV (neutron)". For the present shielding design, it is absolutely imperative for the safety review to validate the shielding ability which makes detection level lower than these
-ray and neutron detector. For this purpose, the energy reduction of neutron and photon for water and concrete is evaluated by PHITS code. From the calculating results, it is found that the photon energy range extended to 10 MeV by water and concrete shielding material only, an additional shielding to decrease the photon energy of less than 1.5 MeV is indispensable.
Masaki, Kei; Shibama, Yusuke; Sakurai, Shinji; Katayama, Masahiro*; Sakasai, Akira
Fusion Engineering and Design, 86(9-11), p.1872 - 1876, 2011/10
Times Cited Count:8 Percentile:50.64(Nuclear Science & Technology)JT-60SA vacuum vessel (VV) has the outer diameter of 10 m and the height of 6.6 m. The VV is supported by 9 legs. The material is 316L with low cobalt content of
0.05wt%. The VV has a double wall structure composed of inner/outer shells and ribs to ensure high rigidity at operational load and high toroidal one-turn resistance of
16
simultaneously. The double wall thicknesses are 194 mm at inboard and 242 mm at outboard. Inner/outer shells have 18-mm thicknesses. In the double wall, boric-acid water of
50
C circulates at plasma operation to reduce nuclear heating of the superconducting coils. At the baking of 200
C, nitrogen gas circulates in the double wall. Fundamental welding R&D and a trial manufacturing of the 20
upper half of the VV have been performed to study the manufacturing procedure. After the confirmation of the quality of the mock-up, manufacturing of the actual VV started in December 2009.
Kizu, Kaname; Kashiwa, Yoshitoshi; Murakami, Haruyuki; Obana, Tetsuhiro*; Takahata, Kazuya*; Tsuchiya, Katsuhiko; Yoshida, Kiyoshi; Hamaguchi, Shinji*; Matsui, Kunihiro; Nakamura, Kazuya*; et al.
Fusion Engineering and Design, 86(6-8), p.1432 - 1435, 2011/10
Times Cited Count:8 Percentile:50.64(Nuclear Science & Technology)In JT-60SA, central solenoid (CS) and plasma equilibrium field (EF) coils are procured by Japan. EF coil conductors are NbTi cable-in-conduit (CIC) conductor. Delivered superconducting cables and jackets are fabricated into CIC conductors at the jacketing facility with the length of 680 m constructed in the Naka site of JAEA. The production of superconductors with 444 m in length for actual EF coils was started from March 2010. The measurements of superconducting performance like current sharing temperature (Tcs) were conducted prior to the mass production. The measured Tcs was agreed with the expectation values from strand values indicating that no degradation was happened by production process.
Ishikawa, Masao; Kawano, Yasunori; Imazawa, Ryota; Sato, Satoshi; Vayakis, G.*; Bertalot, L.*; Yatsuka, Eiichi; Hatae, Takaki; Kondoh, Takashi; Kusama, Yoshinori
Fusion Engineering and Design, 86(6-8), p.1286 - 1289, 2011/10
Times Cited Count:1 Percentile:10.08(Nuclear Science & Technology)The nuclear heating rates of the optical mirrors of the poloidal polarimeter installed in the equatorial port plug of ITER are calculated. Since the system cannot have a sufficiently labyrinthine structure and the second mirrors are located nearly as close to the plasma as the first mirrors due to limited space, the nuclear heating rate of the second mirrors is as high as that of the first mirrors. However, it is possible to reduce the nuclear heating rates of the mirrors if the blanket shield module provides a sufficient degree of neutron shielding.