Refine your search:     
Report No.
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Path to 1 MW; Beam loss control in the J-PARC 3-GeV RCS

Hotchi, Hideaki; Harada, Hiroyuki; Kato, Shinichi; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Tani, Norio; Watanabe, Yasuhiro; et al.

Proceedings of 57th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2016) (Internet), p.480 - 485, 2016/08

The J-PARC 3-GeV RCS has achieved a 1-MW beam acceleration in January 2015. Since then, a large fraction of our effort has been focused on reducing and managing beam losses. In the beam test in October 2015, we successfully minimized space-charge induced beam loss by optimizing the injection painting technique, as well as suppressed beam instability by controlling the tune and the chromaticity. In addition, in the recent beam test, the transverse painting area was successfully expanded by introducing both quadrupole correctors and anti-correlated painting scheme, by which a foil scattering part of beam loss during charge-exchange injection was further reduced. By such recent efforts, the 1-MW beam operation is now estimated to be established within a permissible beam loss level. In this talk, recent progresses of RCS beam commissioning are reported with particular emphasis on our approaches to beam loss issues.

Journal Articles

Stripline beam position monitors with improved frequency response and their coupling impedances

Shobuda, Yoshihiro; Chin, Y. H.*; Takata, Koji*; Toyama, Takeshi*; Nakamura, Keigo*

Proceedings of 57th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2016) (Internet), p.523 - 528, 2016/08

In J-PARC MR, there is a concern that electron cloud instabilities may appear and limit the beam current at future higher power operations. For the case, we have developed a wider-band beam position monitor by deforming the electrode shapes. The modification of the electrode can be done without significant enhancement of the beam coupling impedance. For typical electrode shapes, we show the coupling impedances as well as the frequency responses of the electrodes.

Journal Articles

An Experimental plan for 400 MeV H$$^{-}$$ stripping to proton by using only lasers in the J-PARC RCS

Saha, P. K.; Harada, Hiroyuki; Kato, Shinichi; Kinsho, Michikazu; Irie, Yoshiro*; Yamane, Isao*

Proceedings of 57th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2016) (Internet), p.310 - 314, 2016/08

Journal Articles

Longitudinal particle tracking code for a high intensity proton synchrotron

Yamamoto, Masanobu

Proceedings of 57th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2016) (Internet), p.110 - 114, 2016/08

We have been developing a longitudinal particle tracking code for a high intensity proton synchrotron, especially for the J-PARC Synchrotron. Although some longitudinal particle tracking codes exist, our code can track the particles with a wake voltage and a space charge effect, and also can calculate a beam emittance and a momentum filling factor under a multi-harmonics to evaluate the margin of a rf bucket. Furthermore, we originally have developed the calculation method of a synchronous particle, which realizes the simulation in the case that the revolution frequency of the synchronous particle is not proportional to an acceleration frequency pattern. This is useful to check an adiabaticity. We have achieved 1 MW-eq. beam acceleration at J-PARC RCS by using the code because we can calculate the optimum acceleration conditions for the high intensity beam. We will describe the basic design of the code and the simulation results for the J-PARC RCS and MR.

Oral presentation

Injecting painting improvements in the J-PARC RCS

Kato, Shinichi; Harada, Hiroyuki; Hotchi, Hideaki; Saha, P. K.; Okabe, Kota; Takayanagi, Tomohiro; Horino, Koki; Ueno, Tomoaki; Tobita, Norimitsu*; Kinsho, Michikazu

no journal, , 

In the J-PARC 3GeV RCS, the injection painting is essential method for the reduction of the space charge force. In this method, the H$$^{-}$$ beam from Linac is arranged on the large phase space area of the ring orbit during multiple turns. To implement this method, painting magnets form the time variable beam orbit. Therefore, the precise output current control of the magnet power supply is required. Because the power supply controlled by mainly feedforward signal is operated, we developed the iterative tuning method for the optimum feedforward parameter determination. As a result, we could reduce the tracking error of the current compared to before. Furthermore, to improve the accuracy of the painting area size, we applied the output readjustment additionally. Because the current monitor value of the power supply was different from the actual magnetic field due to the delay in the circuit and the leakage field, we corrected the tracking of the current based on the measured painting area size determined by the analysis of the measured COD. As a result, we achieved the precise injection painting. This talk presents these improvement results of the injection painting in the RCS.

5 (Records 1-5 displayed on this page)
  • 1