Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tatsumoto, Hideki; Otsu, Kiichi; Aso, Tomokazu; Kawakami, Yoshihiko; Teshigawara, Makoto
AIP Conference Proceedings 1573, p.66 - 73, 2014/01
Times Cited Count:6 Percentile:93.37The J-PARC cryogenic hydrogen system provides supercritical hydrogen provides to three moderators. A heater for the thermal compensation and a cryogenic accumulator are prepared to mitigate a pressure fluctuation. A feed temperature should be lower than 20 K and its fluctuation should be within 0.25 K to provide cold pulsed neutron beams of a higher neutronic performance. An ortho-para hydrogen convertor is installed to maintain the para-hydrogen concentration of more than 99.0%. In this study, it is confirmed that para-hydrogen always exists in the equilibrium concentration during the cool-down process. Propagation characteristics of temperature fluctuation caused by sudden heater power variations were studied. An allowable temperature fluctuation caused by the heater control approach is determined to be 1.05 K. It is found that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data for on-beam commissioning.
Tatsumoto, Hideki; Shirai, Yasuyuki*; Shiotsu, Masahiro*; Hata, Koichi*; Naruo, Yoshihiro*; Kobayashi, Hiroaki*; Inatani, Yoshifumi*
AIP Conference Proceedings 1573, p.44 - 51, 2014/01
Times Cited Count:11 Percentile:97.55Heat transfers from the inner side of vertically-mounted heated pipes to forced flow of saturated liquid hydrogen were measured with a quasi-steady increase of a heat generation rate for wide ranges of flow rate and saturated pressure. The tube heaters have lengths L of 100 mm and 167 mm with the diameter D of 4 mm and lengths of 150 mm and 250 mm with the diameter of 6 mm. The heat fluxes at departure from nucleate boiling (DNB) were higher for higher flow velocity, lower pressures and shorter L/D. The effect of L/D on the DNB heat flux was clarified. It is confirmed that our DNB correlation can describe the experimental data.
Kamiya, Koji; Furukawa, Masato; Hatakenaka, Ryuta*; Miyakita, Takeshi*; Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Koide, Yoshihiko; Yoshida, Kiyoshi
AIP Conference Proceedings 1573, p.455 - 462, 2014/01
Times Cited Count:5 Percentile:91.45The thermal shield of JT-60SA is kept at 80 K and will use the Multi Layered Insulator (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for insulated MLI are proposed focusing on a way to overlap MLI. A boil-off calorimeter method and temperature measurement has been performed to determine the thermal performance of MLI. The design of electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.
Hemmi, Tsutomu; Nishimura, Arata*; Matsui, Kunihiro; Koizumi, Norikiyo; Nishijima, Shigehiro*; Shikama, Tatsuo*
AIP Conference Proceedings 1574, p.154 - 161, 2014/01
Times Cited Count:6 Percentile:93.37Japan Atomic Energy Agency (JAEA), as Japan Domestic Agency, has responsibility to procure 9 ITER Toroidal Field (TF) coils. The insulation system of the ITER TF coils consists of 3 layers of insulations, which are a conductor insulation, a double-pancake (DP) insulation and a ground insulation, composed of multi-layer glass/polyimide tapes impregnated a resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from -ray and neutrons since the ITER TF coils is exposed by first neutron (
0.1 MeV) of 10
n/m
during the operation of 20 years in the ITER. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength of glass-fiber reinforced plastics (GFRP) fabricated using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply the ITER TF coil insulation.