Refine your search:     
Report No.
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Technique of neutron resonance transmission analysis for active neutron NDA

Tsuchiya, Harufumi; Koizumi, Mitsuo; Kitatani, Fumito; Kureta, Masatoshi; Harada, Hideo; Seya, Michio; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.

Proceedings of 37th ESARDA Annual Meeting (Internet), p.846 - 851, 2015/08

One of non-destructive techniques using neutron resonance reaction is neutron resonance transmission analysis (NRTA). We are presently developing a new active neutron non-destructive method including NRTA in order to detect and quantify special nuclear materials (SNMs) in nuclear fuels containing MA. We aim at applying the technique to not only particle-like debris but also other materials in high radiation field. For this aim, we make use of fruitful knowledge of neutron resonance densitometry (NRD) that was developed for particle-like debris in melted fuel. NRTA detects and quantifies SNMs by means of analyzing a neutron transmission spectrum via a resonance shape analysis. In this presentation, we explain the basic of NRTA and its role in the active neutron technique. Then, with knowledge obtained in the development of NRD, we discuss items to be investigated for NRTA in our active neutron technique.

Journal Articles

Techniques of neutron resonance capture analysis and prompt $$gamma$$-ray analysis for active neutron NDA

Koizumi, Mitsuo; Tsuchiya, Harufumi; Kitatani, Fumito; Kureta, Masatoshi; Seya, Michio; Harada, Hideo; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.

Proceedings of 37th ESARDA Annual Meeting (Internet), p.852 - 858, 2015/08

Journal Articles

R&D status of nondestructive assay system based on nuclear resonance fluorescence

Shizuma, Toshiyuki; Hajima, Ryoichi; Hayakawa, Takehito; Angell, C.; Seya, Michio

Proceedings of 37th ESARDA Annual Meeting (Internet), p.838 - 845, 2015/08

Nondestructive assay (NDA) of nuclear materials is an important technology for nuclear security and safeguard applications. We have proposed an NDA system based on nuclear resonance fluorescence (NRF). In the proposed detection system, an energy-tunable and mono-energetic $$gamma$$-ray source generated by Compton scattering of laser light (laser Compton scattering; LCS) with high-energy electrons is used. The NRF measurement can be more efficient by using a mono-energetic $$gamma$$-ray beam, which has been demonstrated in recent NRF measurements. We have started a research and development program of the LCS $$gamma$$-ray NDA systems, which includes demonstration of LCS $$gamma$$-ray generation from an energy recovery linac (ERL), establishment of detection system, and benchmark of Monte Carlo simulation. The R&D status including recent results on the demonstrations of the LCS photon generation as well as the measurement principles will be reported.

Journal Articles

JAEA-JRC collaboration on the development of active neutron NDA techniques

Kureta, Masatoshi; Koizumi, Mitsuo; Ozu, Akira; Furutaka, Kazuyoshi; Tsuchiya, Takahiro*; Seya, Michio; Harada, Hideo; Abousahl, S.*; Heyse, J.*; Kopecky, S.*; et al.

Proceedings of 37th ESARDA Annual Meeting (Internet), p.111 - 120, 2015/08

The JAEA has just started the new program "Development of active neutron NDA techniques" collaborating with EC-JRC. The final purpose of this program is to establish the measurement techniques for the high radioactive special nuclear material such as MA-Pu fuel for transmutation of minor actinide and for nuclear security applications. In this program, JAEA will conduct the R&D on active neutron non-destructive measurement techniques, DDA, NRTA, PGA/NRCA and DGS.

Journal Articles

Improved holdup blender assay system (IBAS) slope validation measurements to improve nuclear material accountancy of high alpha holdup

LaFleur, A. M.*; Nakamura, Hironobu; Menlove, H. O.*; Mukai, Yasunobu; Swinhoe, M. T.*; Marlow, J. B.*; Kurita, Tsutomu

Proceedings of 37th ESARDA Annual Meeting (Internet), p.435 - 441, 2015/08

The IBAS (Improved Holdup Blender Assay System) system for safeguards and nuclear material accountancy (NMA) of holdup measurements is used at PCDF. The purpose of this detector is to measure the doubles rate from each glovebox in order to determine the mass of Pu holdup. In order to establish calibration curves for the IBAS detector and improve the holdup measurement methodology, JAEA conducted the IBAS calibration exercise with LANL support using MOX standards in 2010. In 2011, a cleanout exercise was performed and the results showed that the holdup removed from the glovebox had a significantly higher alpha term (alpha = 15.8 - 31.5) than the MOX standards (alpha = 0.67) used to establish the 2010 calibration curves. To further investigate these findings, JAEA conducted slope validation measurements in 2013 to confirm the validity of IBAS calibration slopes for the case of high alpha holdup. This paper describes the IBAS slope validation tests, analysis of the experimental results, and the evaluation of the need for a correction factor for the high alpha holdup. Quantifying the alpha term of the holdup in each glove box and understanding how this value changes over time is important to improving the overall NMA at PCDF. The results from this work will provide invaluable experimental data that directly supports safeguards and NMA measurements of plutonium holdup in gloveboxes.

Journal Articles

Demonstration result of sample assay system equipped alternative He-3 detectors

Nakamura, Hironobu; Mukai, Yasunobu; Tobita, Hiroshi; Nakamichi, Hideo; Ozu, Akira; Kureta, Masatoshi; Kurita, Tsutomu; Seya, Michio

Proceedings of 37th ESARDA Annual Meeting (Internet), p.45 - 53, 2015/08

JAEA conducted an R&D project to develop a new type of neutron detector using ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator (as an alternative neutron detector to He-3) with support of Japanese government. The design of the JAEAs alternative system (ASAS: Alternative Sample Assay System using ceramic scintillator tubes) refers basically to the INVS (INVentory Sample assay system) which is the passive type of neutron assay system equipped total 18 He-3 tubes and capable of measuring the small amount of Pu in the MOX powder or Pu nitrate solution in a vial for nuclear material accountancy and safeguards verification. In order to prove the alternative technology and the performance instead of He-3 detector, and to establish Pu measurement capability, JAEA developed and fabricated ASAS equipped 24 alternative ceramic scintillator tubes (which is equivalent to the same counting efficiency of INVS) and demonstrated. The demonstration activity implemented the confirmation of reproducibility about sample positioning, optimization of detector parameters, counting statistical uncertainty, stability check and figure of merit (FOM) using Cf check source and actual MOX powder in PCDF (Plutonium Conversion Development Facility). In addition, performance comparison between the current INVS and the ASAS was also implemented. In this paper, we present demonstration results with design information with Monte-Carlo simulation code (MCNP).

Journal Articles

Utilizing delayed $$gamma$$ rays for fissionable material measurement in NDA

Rodriguez, D.; Takamine, Jun; Koizumi, Mitsuo; Seya, Michio

Proceedings of 37th ESARDA Annual Meeting (Internet), p.831 - 836, 2015/08

A non-destructive analysis system using a pulsed neutron source is under design by researchers of the JAEA, and JRC-ITU (Ispra) and JRC-IRMM. The system will utilize a combination of neutron resonance transmission analysis and differential die-away and both prompt and Delayed Gamma-ray (DG) Spectroscopy (DGS) techniques. This system will be applied toward safeguards applications by effectively determining Nuclear Material (NM) compositions within MOX fuel samples and NM samples with high neutron or $$gamma$$-ray emissions (including the melted fuel). Additionally, this system can be applied toward nuclear security by detecting the high-energy DGs that can more efficiently pass through shielding materials. This presentation will describe the initial status of the DG portion of this system and how it will be used in conjunction with the other techniques to provide both high accuracy and high precision of the composition of the NM of interest.

Journal Articles

Overview of activities and outcomes at ISCN related to Japanese commitment at nuclear security summit process

Naoi, Yosuke; Kobayashi, Naoki; Mochiji, Toshiro; Senzaki, Masao; Seya, Michio

Proceedings of 37th ESARDA Annual Meeting (Internet), p.100 - 110, 2015/08

In April 2010 at the Nuclear Security Summit in Washington, D.C., Japan made a commitment to establish a center of excellence on nuclear nonproliferation and security. This center would support capacity building for strengthening nuclear nonproliferation and security mainly in the Asian region and also would engage in development of technology related measurement and detection of nuclear material including nuclear forensics based on international cooperation. According to this statement, Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) was established under Japan Atomic Energy Agency (JAEA) in December 2010. Since its establishment four years ago, ISCN has developed its activities, having already conducted 74 training courses for the nuclear nonproliferation and security fields and having trained 2,096 participants from 49 countries (including Japan) and three international organizations. As for technical development on detection and measurement of nuclear material, ISCN has carried out substantial outcome with the international cooperation of U.S. and EU/JRC. It can be said that it is a significant achievement of the Nuclear Security Summit process. This paper will overview the outcome of ISCN's activities over the past four years.

8 (Records 1-8 displayed on this page)
  • 1