Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 24

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Control of spin currents by magnon interference in a canted antiferromagnet

Sheng, L.*; Yamamoto, Kei; 18 of others*

Nature Physics, 8 Pages, 2025/04

 Times Cited Count:1

Journal Articles

Spectral evidence for Dirac spinons in a kagome lattice antiferromagnet

Zeng, Z.*; Zhou, C.*; Zhou, H.*; Han, L.*; Chi, R.*; Li, K.*; Kofu, Maiko; Nakajima, Kenji; Wei, Y.*; Zhang, W.*; et al.

Nature Physics, 20(7), p.1097 - 1102, 2024/07

 Times Cited Count:10 Percentile:94.36(Physics, Multidisciplinary)

Journal Articles

Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet

Han, J.*; Uchimura, Tomohiro*; Araki, Yasufumi; Yoon, J.-Y.*; Takeuchi, Yutaro*; Yamane, Yuta*; Kanai, Shun*; Ieda, Junichi; Ohno, Hideo*; Fukami, Shunsuke*

Nature Physics, 20(7), p.1110 - 1117, 2024/07

 Times Cited Count:15 Percentile:96.56(Physics, Multidisciplinary)

Quantum metric and Berry curvature are two fundamental and distinct factors to describe the geometry of quantum eigenstates. While Berry curvature is known for playing crucial roles in several condensed-matter states, quantum metric, which was predicted to induce new classes of topological phenomena, has rarely been touched, particularly in an ambient circumstance. Using a topological chiral antiferromagnet Mn$$_{3}$$Sn adjacent to Pt, at room temperature, we successfully manipulate the quantum-metric structure of electronic states through its interplay with the nanoscale spin texture at the Mn$$_{3}$$Sn/Pt interface. This is manifested by a time-reversal-odd second-order Hall effect that is robust against extrinsic electron scattering, in contrast to any transport effects from the Berry curvature. We also verify the flexibility of controlling the quantum-metric structure, as the interacting spin texture can be tuned by moderate magnetic fields or by interface engineering via spin-orbit interactions. Our work paves a way for harnessing the quantum-metric structure to unveil emerging topological physics in practical environments and to build applicable nonlinear devices.

Journal Articles

Current numbers of qubits and their uses

Ichikawa, Tsubasa*; Hakoshima, Hideaki*; Inui, Koji*; Ito, Kosuke*; Matsuda, Ryo*; Mitarai, Kosuke*; Miyamoto, Koichi*; Mizukami, Wataru*; Mizuta, Kaoru*; Mori, Toshio*; et al.

Nature Reviews Physics (Internet), 6(6), p.345 - 347, 2024/06

 Times Cited Count:7 Percentile:99.15(Physics, Applied)

Journal Articles

Discrete degeneracies distinguished by the anomalous Hall effect in a metallic kagome ice compound

Zhao, K.*; Tokiwa, Yoshifumi; Chen, H.*; Gegenwart, P.*

Nature Physics, 20(3), p.442 - 449, 2024/03

 Times Cited Count:10 Percentile:95.37(Physics, Multidisciplinary)

In magnetic crystals, despite the explicit breaking of time-reversal symmetry, two equilibrium states related by time reversal are always energetically degenerate. In ferromagnets, this time-reversal degeneracy is reflected in the hysteresis of the magnetic field dependence of the magnetization and, if metallic, in that of the anomalous Hall effect (AHE). Under time-reversal, both these quantities change signs but not their magnitude. Here we show that a time-reversal-like degeneracy appears in the metallic kagome spin ice HoAgGe when magnetic fields are applied parallel to the kagome plane. We find vanishing hysteresis in the field dependence of the magnetization at low temperature, but finite hysteresis in the field-dependent AHE. This suggests the emergence of states with nearly the same energy and net magnetization but different sizes of the AHE and of the longitudinal magnetoresistance. By analysing the experimental data and a minimal tight-binding model, we identify a time-reversal-like operation connecting these near-degenerate states, which is related to the non-trivial distortion of the kagome lattice in HoAgGe. Our work demonstrates the diagnostic power of transport phenomena for identifying hidden symmetries in frustrated spin systems.

Journal Articles

A One-third magnetization plateau phase as evidence for the Kitaev interaction in a honeycomb-lattice antiferromagnet

Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Xi, N.*; Gao, Y.-P.*; Ma, Z.*; Wang, W.*; Qi, Z.*; Zhang, S.*; Huang, Z.*; et al.

Nature Physics, 19(12), p.1883 - 1889, 2023/09

 Times Cited Count:19 Percentile:94.19(Physics, Multidisciplinary)

Journal Articles

Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials

Takagi, Hirotaka*; Takagi, Rina*; Minami, Susumu*; Nomoto, Takuya*; Oishi, Kazuki*; Suzuki, Michito*; Yanagi, Yuki*; Hirayama, Motoaki*; Khanh, N.*; Karube, Kosuke*; et al.

Nature Physics, 19(7), p.961 - 968, 2023/07

 Times Cited Count:50 Percentile:99.07(Physics, Multidisciplinary)

Journal Articles

Chiral symmetry restoration at high matter density observed in pionic atoms

Nishi, Takahiro*; Hashimoto, Tadashi; 46 of others*

Nature Physics, 19(6), p.788 - 793, 2023/06

 Times Cited Count:15 Percentile:88.25(Physics, Multidisciplinary)

Journal Articles

Creation of quark-gluon plasma droplets with three distinct geometries

Aidala, C.*; Hasegawa, Shoichi; Imai, Kenichi; Sako, Hiroyuki; Sato, Susumu; Tanida, Kiyoshi; PHENIX Collaboration*; 312 of others*

Nature Physics, 15(3), p.214 - 220, 2019/03

 Times Cited Count:112 Percentile:97.37(Physics, Multidisciplinary)

Journal Articles

Characterization of the shape-staggering effect in mercury nuclei

Marsh, B. A.*; Day Goodacre, T.*; Tsunoda, Yusuke*; Andreyev, A. N.; 41 of others*

Nature Physics, 14(12), p.1163 - 1167, 2018/12

 Times Cited Count:118 Percentile:96.95(Physics, Multidisciplinary)

Journal Articles

Spin pumping from nuclear spin waves

Shiomi, Yuki*; Lustikova, J.*; Watanabe, Shingo*; Hirobe, Daichi*; Takahashi, Saburo*; Saito, Eiji

Nature Physics, 15(1), p.22 - 26, 2018/10

 Times Cited Count:21 Percentile:74.72(Physics, Multidisciplinary)

Journal Articles

Thermodynamic evidence for nematic superconductivity in Cu$$_{x}$$Bi$$_{2}$$Se$$_{3}$$

Yonezawa, Shingo*; Tajiri, Kengo*; Nakata, Suguru*; Nagai, Yuki; Wang, Z.*; Segawa, Koji*; Ando, Yoichi*; Maeno, Yoshiteru*

Nature Physics, 13(2), p.123 - 126, 2017/02

 Times Cited Count:215 Percentile:98.81(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

One-dimensional spinon spin currents

Hirobe, Daichi*; Sato, Masahiro*; Kawamata, Takayuki*; Shiomi, Yuki*; Uchida, Kenichi*; Iguchi, Ryo*; Koike, Yoji*; Maekawa, Sadamichi; Saito, Eiji

Nature Physics, 13(1), p.30 - 34, 2017/01

 Times Cited Count:122 Percentile:96.98(Physics, Multidisciplinary)

Journal Articles

Spin hydrodynamic generation

Takahashi, Ryo*; Matsuo, Mamoru; Ono, Masao; Harii, Kazuya; Chudo, Hiroyuki; Okayasu, Satoru; Ieda, Junichi; Takahashi, Saburo*; Maekawa, Sadamichi; Saito, Eiji

Nature Physics, 12, p.52 - 56, 2016/01

 Times Cited Count:121 Percentile:96.17(Physics, Multidisciplinary)

Journal Articles

Colossal thermomagnetic response in the exotic superconductor URu$$_2$$Si$$_2$$

Yamashita, Takuya*; Shimoyama, Yusuke*; Haga, Yoshinori; Matsuda, Tatsuma*; Yamamoto, Etsuji; Onuki, Yoshichika; Sumiyoshi, Hiroaki*; Fujimoto, Satoshi*; Levchenko, A.*; Shibauchi, Takasada*; et al.

Nature Physics, 11(1), p.17 - 20, 2015/01

 Times Cited Count:60 Percentile:90.17(Physics, Multidisciplinary)

Journal Articles

Degenerate Fermi and non-Fermi liquids near a quantum critical phase transition

Kambe, Shinsaku; Sakai, Hironori; Tokunaga, Yo; Lapertot, G.*; Matsuda, Tatsuma*; Knebel, G.*; Flouquet, J.*; Walstedt, R. E.*

Nature Physics, 10(11), p.840 - 844, 2014/11

 Times Cited Count:18 Percentile:69.47(Physics, Multidisciplinary)

In new observations reported here, we find that coexisting, static Fermi liquid and non-Fermi liquid states are a key feature of the QCPT in YbRh$$_{2}$$Si$$_{2}$$. By means of nuclear magnetic resonance (NMR) spin-lattice relaxation time measurements on a single crystal sample, it is revealed that the FL and NFL states are invariant,while their relative proportion in a crossover is field dependent near the QCPT. Such a pair of states has remained hidden in Ce compounds, owing presumably to short lifetimes for the two states. A new scaling law for the occupation ratio of the two states is derived, and could be widely applicable to Kondo-lattice systems

Journal Articles

Polaron spin current transport in organic semiconductors

Watanabe, Shun*; Ando, Kazuya*; Kang, K.*; Mooser, S.*; Vaynzof, Y.*; Kurebayashi, Hidekazu*; Saito, Eiji; Sirringhaus, H.*

Nature Physics, 10(4), p.308 - 313, 2014/04

 Times Cited Count:189 Percentile:97.78(Physics, Multidisciplinary)

Journal Articles

Bipartite magnetic parent phases in the iron oxypnictide superconductor

Hiraishi, Masatoshi*; Iimura, Soshi*; Kojima, Kenji*; Yamaura, Junichi*; Hiraka, Haruhiro*; Ikeda, Kazutaka*; Miao, P.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Miyazaki, Masanori*; et al.

Nature Physics, 10(4), p.300 - 303, 2014/04

 Times Cited Count:108 Percentile:95.07(Physics, Multidisciplinary)

Journal Articles

Emergent rank-5 nematic order in URu$$_2$$Si$$_2$$

Ikeda, Hiroaki*; Suzuki, Michito; Arita, Ryotaro*; Takimoto, Tetsuya*; Shibauchi, Takasada*; Matsuda, Yuji*

Nature Physics, 8(7), p.528 - 533, 2012/07

 Times Cited Count:138 Percentile:95.92(Physics, Multidisciplinary)

The origin of the hidden-order phase transition of URu$$_2$$Si$$_2$$ has been a long-standing mystery in condensed matter physics. We examine the complete set of multipole correlations allowed in URu$$_2$$Si$$_2$$ based on a first-principles theoretical approach. The results uncover that the hidden-order parameter is a rank-5 multipole (dotriacontapole) order with nematic $$E$$$$^{-}$$ symmetry. This naturally provides comprehensive explanations of all key features in the hidden-order phase including anisotropic magnetic excitations, nearly degenerate antiferromagnetic-ordered state, and spontaneous rotational symmetry breaking.

Journal Articles

Charge-induced vortex lattice instability

Mounce, A. M.*; Oh, S.*; Mukhopadhyay, S.*; Halperin, W. P.*; Reyes, A. P.*; Kuhns, P. L.*; Fujita, Kazuhiro*; Ishikado, Motoyuki; Uchida, Shinichi*

Nature Physics, 7(2), p.125 - 128, 2011/02

 Times Cited Count:8 Percentile:49.58

It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for high-temperature superconductors. Hall effect and nuclear magnetic resonance (NMR) experiments suggest the existence of charge accumulation in the vortex core, but the effects are small and the interpretation controversial. Here we show that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at a sufficiently high magnetic field if there is charge trapped on the vortex core. Our NMR measurements of the magnetic fields generated by vortices in Bi$$_{2}$$Sr$$_{2}$$CaCu$$_{2}$$O$$_{8+y}$$ single crystals provide evidence for an electrostatically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of $$sim2 times 10^{-3}e$$, depending on doping, in line with theoretical estimates.

24 (Records 1-20 displayed on this page)