Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Large-eddy simulation of plume dispersion in the central district of Oklahoma City by coupling with a mesoscale meteorological simulation model and observation

Nakayama, Hiromasa; Takemi, Tetsuya*; Yoshida, Toshiya

Atmosphere (Internet), 12(7), p.889_1 - 889_15, 2021/07

 Times Cited Count:0 Percentile:0.01(Environmental Sciences)

Contaminant gas dispersion within urban area resulting from accidental or intentional release is of great concern to public health and social security. When estimating plume dispersion in a built-up urban area under real meteorological conditions by computational fluid dynamics (CFD), a crucial issue is how to prescribe the model input conditions. There are typically two approaches: using the outputs of a meso-scale meteorological simulation (MMS) model and meteorological observations (OBS). However, the influence of the different approaches on the simulation results have not been fully demonstrated. In this study, we conducted large-eddy simulations (LESs) of plume dispersion in the urban central district under real meteorological conditions by coupling with a MMS model and OBS obtained at a single stationary point, and evaluated the two different coupling simulations in comparison with the field experimental data. The LES-MMS coupling showed better performance than the LES-OBS one. However, the latter one also showed a reasonable performance comparable to the acceptance criteria on the model prediction within a factor of two of the experimental data. These facts indicate that the approach of using observations at a single stationary point still has enough potential to drive CFD models for plume dispersion under real meteorological conditions.

Journal Articles

Toward development of a framework for prediction system of local-scale atmospheric dispersion based on a coupling of LES-database and on-site meteorological observation

Nakayama, Hiromasa; Yoshida, Toshiya; Terada, Hiroaki; Kadowaki, Masanao

Atmosphere (Internet), 12(7), p.899_1 - 899_16, 2021/07

 Times Cited Count:0 Percentile:0.01(Environmental Sciences)

In this study, first, we conducted meteorological observations by a Doppler LiDAR and simple plume release experiments by a mist spraying system at the site of Japan Atomic Energy Agency. Then, we developed a framework for prediction system of local-scale atmospheric dispersion based on a coupling of large-eddy simulation (LES) database and on-site meteorological observation. The LES-database was also created by pre-calculating high-resolution turbulent flows in the target site at mean wind directions of class interval. We provided the meteorological observed data with the LES database in consideration of building conditions and calculated three-dimensional distribution of the plume by a Lagrangian dispersion model. Compared to the instantaneous shot of the plume taken by a digital camera, it was shown that the mist plume transport direction was accurately simulated. It was concluded that our proposed framework for prediction system based on a coupling of LES-database and on-site meteorological observation is effective.

Journal Articles

Inner and outer-layer similarity of the turbulence intensity profile over a realistic urban geometry

Inagaki, Atsushi*; Wangsaputra, Y.*; Kanda, Manabu*; Y$"u$cel, M.*; Onodera, Naoyuki; Aoki, Takayuki*

SOLA (Scientific Online Letters on the Atmosphere) (Internet), 16, p.120 - 124, 2020/00

 Times Cited Count:0 Percentile:0.01(Meteorology & Atmospheric Sciences)

The similarity of the turbulence intensity profile with the inner-layer and the outer-layer scalings were examined for an urban boundary layer using numerical simulations. The simulations consider a developing neutral boundary layer over realistic building geometry. The computational domain covers an 19.2 km by 4.8 km and extends up to a height of 1 km with 2-m grids. Several turbulence intensity profiles are defined locally in the computational domain. The inner- and outer-layer scalings work well reducing the scatter of the turbulence intensity within the inner- and outer-layers, respectively, regardless of the surface geometry. Although the main scatters among the scaled profiles are attributed to the mismatch of the parts of the layer and the scaling parameters, their behaviors can also be explained by introducing a non-dimensional parameter which consists of the ratio of length or velocity.

3 (Records 1-3 displayed on this page)
  • 1