Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Rigidity of protein structure revealed by incoherent neutron scattering

Nakagawa, Hiroshi; Kataoka, Mikio*

Biochimica et Biophysica Acta; General Subjects, 1864(4), p.129536_1 - 129536_6, 2020/04

 Times Cited Count:2 Percentile:45.26(Biochemistry & Molecular Biology)

The rigidity and flexibility of a protein is reflected in its structural dynamics. Studies on protein dynamics often focus on flexibility and softness; this review focuses on protein structural rigidity. The extent of rigidity can be assessed experimentally with incoherent neutron scattering; a method that is complementary to molecular dynamics simulation. This experimental technique can provide information about protein dynamics in timescales of pico- to nanoseconds and at spatial scales of nanometers; these dynamics can help quantify the rigidity of a protein by indices such as force constant, Boson peak, dynamical transition, and dynamical heterogeneity. These indicators also reflect the rigidity of a protein's secondary and tertiary structures. In addition, the indices reveal how rigidity is influenced by different environmental parameters, such as hydration, temperature, pressure, and protein-protein interactions. Hydration affects both rigidity and softness more than other environmental factors. Interestingly, hydration affects harmonic and anharmonic motions in opposite ways. This difference is probably due to the protein's dynamic coupling with water molecules via hydrogen bonding.

Journal Articles

Inelastic and quasi-elastic neutron scattering spectrometers in J-PARC

Seto, Hideki; Ito, Shinichi; Yokoo, Tetsuya*; Endo, Hitoshi*; Nakajima, Kenji; Shibata, Kaoru; Kajimoto, Ryoichi; Kawamura, Seiko; Nakamura, Mitsutaka; Kawakita, Yukinobu; et al.

Biochimica et Biophysica Acta; General Subjects, 1861(1), p.3651 - 3660, 2017/01

 Times Cited Count:21 Percentile:80.69(Biochemistry & Molecular Biology)

J-PARC, Japan Proton Accelerator Research Complex provides short pulse proton beam at a repetition rate 25 Hz and the maximum power is expected to be 1 MW. Materials and Life Science Experimental Facility (MLF) has 23 neutron beam ports and 21 instruments have already been operated or under construction / commissioning. There are 6 inelastic / quasi-elastic neutron scattering spectrometers and the complementary use of these spectrometers will open new insight for life science.

2 (Records 1-2 displayed on this page)
  • 1