Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Miyazaki, Yasunori; Sano, Yuichi; Ishigami, Ryoya*
EPJ Web of Conferences, 317, p.01006_1 - 01006_7, 2025/01
The gamma-ray and He ion beam (which is simulated for alpha-ray from
Am, for example) were irradiated on the TEHDGA adsorbent to evaluate the hydrogen gas production, leaching amount of organics in the immersed 3 M HNO
solution, thermal characteristics and speciation of the degradation products. These were combined to assess the safety of the 1st run of the MA separation process from the raffinate at a dose rate of 1 kGy/h.
Kawamura, Takuma; Shimomura, Kazuya; Osaki, Tsukasa*; Idomura, Yasuhiro
EPJ Web of Conferences, 302, p.11002_1 - 11002_8, 2024/10
Times Cited Count:0In the field of nuclear engineering, complex simulations on exa-scale supercomputers generate large-scale data. To facilitate efficient analysis of such simulation data, one needs to share them among scientists at remote locations. However, data I/O and data transfer for such large-scale data are quite costly. To resolve these issues, we developed a remote in-situ visualization system IS-PBVR based on the particle-based volume rendering (PBVR), which is suitable for parallel processing on modern supercomputers. In this study, we extend IS-PBVR for VR visualization on multiple client PCs, thus developing a multi-point remote VR visualization. We apply this technique to fluid simulations on GPU-based supercomputers and verify its utility by sharing in-situ VR visualization between multiple client PCs.
Kondo, Ryoichi; Endo, Tomohiro*; Yamamoto, Akio*
EPJ Web of Conferences, 302, p.04002_1 - 04002_10, 2024/10
Times Cited Count:0In the recent study, we have developed an efficient flux distribution tallying method in the Monte Carlo calculation toward the high-fidelity, large scale multi-physics simulation. In this method, the proper orthogonal decomposition is applied to the flux distribution tallies. While the tallying method was implemented with the collision estimator in the previous study, the track length estimator is implemented in the present study to obtain the tally with lower statistical error. The implementation of the flux distribution tally with the track length estimator is compared with that of the collision estimator and the normal track length estimator in a one-dimensional problem. The numerical results reveal that the distribution tally using the POD with the track length estimator can obtain a more precise solution compared with that with the collision estimator. Therefore, in terms of the statistical error, the relationship between the distribution tally with track length and collision estimator is similar to that between the conventional track length and collision estimators.
Sugihara, Kenta; Onodera, Naoyuki; Sitompul, Y.; Idomura, Yasuhiro; Yamashita, Susumu
EPJ Web of Conferences, 302, p.03002_1 - 03002_10, 2024/10
Times Cited Count:0In simulations of gas-liquid two-phase flows using conventional interface capture methods, we observed that when bubbles come close to each other, they tend to merge numerically, despite experimental evidence indicating that they would repel each other. Given the significant impact of sequential numerical coalescence on flow patterns, it is necessary to regulate the merging behavior of close bubbles. To address this issue, we introduced the Multi- Phase Field (MPF) method, which mitigates bubble coalescence by applying an independent fluid fraction function to each bubble. In this study, we employed the MPF based on the N-phase model to minimize numerical errors associated with surface interactions at triple junction points. Additionally, we implemented the Ordered Active Parameter Tracking (OAPT) method to efficiently store several hundreds of fluid fraction functions. To validate the MPF method, we conducted analysis of turbulent bubbly pipe flows and compared the results against experimental data from Colin et al. The validation results showed reasonable agreements with respect to the bubble distribution and the flow velocity profiles.
Sitompul, Y.; Sugihara, Kenta; Onodera, Naoyuki; Idomura, Yasuhiro
EPJ Web of Conferences, 302, p.05004_1 - 05004_10, 2024/10
Times Cited Count:0In fast reactor designs, it is of critical importance to avoid gas entrainment phenomena due to free-surface vortices. Numerical analysis is one of the key methods to understand these phenomena. However, the challenges in computational efficiency and accuracy of the previous numerical methods lead to exploring the Lattice Boltzmann method (LBM) as an alternative, known for its computational efficiency and capability in simulating complex flows. In this study, we implement free-surface LBM to accelerate gas entrainment analysis, significantly reducing computational costs while maintaining accuracy compared to traditional methods. Simulation results using LBM align well with experimental data, offering a promising avenue for faster analysis in future fast reactor designs.
Hasegawa, Yuta; Idomura, Yasuhiro; Onodera, Naoyuki
EPJ Web of Conferences, 302, p.03005_1 - 03005_9, 2024/10
Times Cited Count:0We implemented the ensemble data assimilation (DA) method, the local ensemble transform Kalman filter (LETKF), into the mesh-refined lattice Boltzmann method (LBM) for turbulent flows. Both the LETKF and the mesh-refined LBM were fully implemented on GPUs, so that they are efficiently computed on modern GPU-based supercomputers. We examined the DA accuracy against the flow around a cylinder. The result showed that our method enabled accurate DA with spatially- and temporarily-sparse observation data; the error of the assimilated velocity field with the observation interval of and the observation resolution
(1.56% of the total computational grids) was smaller than the amplitude of the observation noise, where
is the period of the K
rm
n vortex and
is diameter of the square cylinder.
Yamada, Susumu; Machida, Masahiko; Tanimura, Naoki*
EPJ Web of Conferences, 302, p.16004_1 - 16004_10, 2024/10
Times Cited Count:0When we decommission a reactor building, it is desirable to identify the radiation source distribution for safety. It has been reported that the source distribution can be estimated from the measured air dose rates at appropriate observation points by minimizing an evaluation function using the Least Absolute Shrinkage and Selection Operator (LASSO). However, it is difficult to decide on suitable points in advance. Therefore, we estimate the posterior distribution from the prior distribution of the source amounts, which are calculated by the standard LASSO, using the Bayesian LASSO, and evaluate the predictive distribution of the evaluated air dose rates at the candidate observation points from the posterior distribution. We select the additional observation point based on the variances of the predictive distributions. We confirmed that the method can estimate the source distribution with fewer additional observation points than when adding ones randomly in most cases.
Khemchandani, K. P.*; Martnez Torres, A.*; Kim, S.-H.*; Nam, S.-I.*; Hosaka, Atsushi; Nagahiro, Hideko*
EPJ Web of Conferences, 301, p.03001_1 - 03001_10, 2024/08
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)no abstracts in English
Kimura, Atsushi; Endo, Shunsuke; Nakamura, Shoji
EPJ Web of Conferences, 294, p.01002_1 - 01002_7, 2024/04
Nakayama, Shinsuke; Iwamoto, Osamu; Kimura, Atsushi
EPJ Web of Conferences, 294, p.07001_1 - 07001_6, 2024/04
Graphite is a candidate of moderator in innovative nuclear reactors such as molten salt reactors. Scattering of thermal neutrons by the moderator material has a significant impact on the reactor core design. To contribute to the development of innovative nuclear reactors, an evaluation method of thermal neutron scattering law for reactor grade graphite was studied. The inelastic scattering component due to lattice vibration was evaluated based on the phonon density of states computed with first-principles lattice dynamics simulations. The simulations were performed for ideal crystalline graphite. The coherent elastic scattering component due to crystal structure was evaluated based on neutron transmission and scattering experiments recently performed in the J-PARC/MLF facility. In comparison with the neutron transmission experiments, it was found that the quantification of small-angle neutron scattering due to structures larger than crystal, such as pores in graphite, is important. Based on the above methods, thermal neutron scattering law data for reactor-grade graphite at room temperature were evaluated.
Gubler, P.; Bratkovskaya, E.*; Ichikawa, Masaya; Song, T.*
EPJ Web of Conferences, 291, p.04003_1 - 04003_4, 2024/02
no abstracts in English
Nakayama, Shinsuke; Iwamoto, Osamu; Sublet, J.-Ch.*
EPJ Web of Conferences, 284, p.14011_1 - 14011_4, 2023/05
JENDL-5, the latest version of the Japanese evaluated nuclear data library, includes several sub-libraries to contribute to various applications. In this paper, we outline the evaluation and validation of the deuteron reaction sub-library developed mainly for the design of accelerator-based neutron sources and the alpha-particle reaction sub-library developed mainly for use in the back-end field. As for the deuteron sub-library, the data for Li,
Be, and
C from JENDL/DEU-2020 were partially modified and adopted. The data up to 200 MeV for
Al,
Cu, and
Nb, which are important as accelerator structural materials, were newly evaluated based on the calculations with the DEURACS code. As for the alpha-particle sub-library, the data up to 15 MeV for 18 light nuclides from Li to Si isotopes were evaluated based on the calculations with the CCONE code, and then only the neutron production cross sections were replaced with the data of JENDL/AN-2005. Validation on neutron yield by Monte Carlo transport simulations was performed for both sub-libraries. As a result, it was confirmed that the simulations based on the sub-libraries showed good agreement with experimental data.
Kodeli, I. A.*; Fleming, M.*; Cabellos, O.*; Leal, L.*; Celik, Y.*; Ding, Y.*; Jansky, B.*; Neudecker, D.*; Novak, E.*; Simakov, S.*; et al.
EPJ Web of Conferences, 284, p.15002_1 - 15002_8, 2023/05
Times Cited Count:2 Percentile:70.99(Nuclear Science & Technology)Working Party on International Nuclear Data Evaluation Co-operation Subgroup 47 (WPEC SG47) entitled "Use of Shielding Integral Benchmark Archive and Database for Nuclear Data Validation" was started in June 2019 with the objectives to promote more systematic and wider use of shielding benchmark experiments in nuclear data and transport code validation and development, to provide feedback on the Shielding Integral Benchmark Archive and Database (SINBAD). Complementing the database with new features was discussed, for example providing the nuclear data sensitivity profiles more systematically would facilitate and better guide the use of data, and the information on the geometry, (radiation source) and materials is expected to allow an easier and less error prone computational model preparation for different transport codes. Examples of the use and some views on future development of the SINBAD benchmark database will be presented in the paper.
Kodama, Yu*; Katabuchi, Tatsuya*; Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Nakano, Hideto*; Sato, Yaoki*; Hori, Junichi*; Shibahara, Yuji*; et al.
EPJ Web of Conferences, 284, p.01024_1 - 01024_3, 2023/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Meigo, Shinichiro; Nakano, Keita*; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*
EPJ Web of Conferences, 284, p.05001_1 - 05001_4, 2023/05
Times Cited Count:1 Percentile:70.99(Nuclear Science & Technology)In high-intensity proton accelerator facilities such as Accelerator Driven System (ADS) and the spallation neutron source, it is crucial to evaluate the damage of beam-interception materials and accelerator components, such as a magnet coil. The displacement per atom (dpa) is used as a damage index, which is derived by integrating the particle flux and the displacement cross section based on the NRT model. Although the dpa is employed as the standard, the experimental data of displacement cross section are scarce for a proton in the energy region above 20 MeV. To obtain the data for superconducting materials for high-intensity accelerators and magnets, the displacement cross section of Nb for proton irradiation with a kinetic energy range between 0.4 and 3 GeV was measured. For sustaining damage in the sample, the Nb sample was cooled at a cryogenic temperature (8 K), where the recombination of Frenkel pairs due to thermal motion was well suppressed with maintaining the normal conductivity to maintain Matthiessen's rule. The displacement cross section of Nb was calculated using the PHITS code, and was compared with the present experimental results. It was found that the widely utilized NRT model overestimates the cross section by a factor of 2, as suggested by the previous works. It was also found that the calculation with a recently proposed athermal recombination corrected (arc) model based on Molecular Dynamics (MD) shows good agreement with the present data.
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Nagaya, Yasunobu; Tada, Kenichi; et al.
EPJ Web of Conferences, 284, p.14001_1 - 14001_7, 2023/05
Times Cited Count:2 Percentile:88.37(Nuclear Science & Technology)Watanabe, Yukinobu*; Sadamatsu, Hiroki*; Araki, Shohei; Nakano, Keita; Kawase, Shoichiro*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.
EPJ Web of Conferences, 284, p.01041_1 - 01041_4, 2023/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Intensive fast neutron sources using deuteron accelerators have been proposed for the study of medical RI production, radiation damage for fusion reactor materials, nuclear transmutation of radioactive waste, and so on. Neutron production data from various materials bombarded by deuterons are required for the design of such neutron sources. In the present work, we have conducted a systematic measurement of double-differential neutron production cross sections (DDXs) for a wide atomic number range of targets (Li, Be, C, Al, Cu, Nb, In, Ta, and Au) at an incident energy of 200 MeV in the Research Center for Nuclear Physics (RCNP), Osaka University. A deuteron beam accelerated to 200 MeV was transported to the neutron experimental hall and focused on a thin target foil. Emitted neutrons from the target were detected by two different-size EJ301 liquid organic scintillators located at two distances of 7 m and 20 m, respectively. The neutron DDXs were measured at six angles from 0 to 25
). The neutron energy was determined by a conventional time-of-flight (TOF) method. The measured DDXs were compared with theoretical model calculations by the DEUteron-induced Reaction Analysis Code System (DEURACS) and PHITS. The result indicated that the DEURACS calculation provides better agreement with the measured DDXs than the PHITS calculation.
Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*; Hori, Junichi*; et al.
EPJ Web of Conferences, 284, p.06007_1 - 06007_4, 2023/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Otsuka, Naohiko*; Iwamoto, Osamu
EPJ Web of Conferences, 284, p.08011_1 - 08011_4, 2023/05
Times Cited Count:3 Percentile:96.18(Nuclear Science & Technology)Nakano, Hideto*; Katabuchi, Tatsuya*; Terada, Kazushi*; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Rovira Leveroni, G.; Kodama, Yu*
EPJ Web of Conferences, 284, p.01032_1 - 01032_3, 2023/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)