Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 954

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

New analysis model of solid body formation in particle method for jet impingement and solidification in severe accidents of SFRs

Imaizumi, Yuya; Kamiyama, Kenji; Matsuba, Kenichi

Annals of Nuclear Energy, 206, p.110658_1 - 110658_10, 2024/10

Journal Articles

Quantifying uncertainty induced by scattering angle distribution using maximum entropy method

Maruyama, Shuhei; Yamamoto, Akio*; Endo, Tomohiro*

Annals of Nuclear Energy, 205, p.110591_1 - 110591_13, 2024/09

Journal Articles

Generalized extreme value analysis of efficient evaluation of extreme values in random media criticality calculations

Ueki, Taro

Progress in Nuclear Energy, 173, p.105236_1 - 105236_10, 2024/08

The theme of this paper is how to efficiently analyse extreme realizations of neutron effective multiplication factor (keff) over random media replicas modelled by incomplete randomized Weierstrass function (IRWF). To this end, a new bounded amplification (BA) technique is applied to IRWF. Numerical results indicate that the BA-applied IRWF reduces a required number of random media replicas at least by an order of magnitude. To validate this efficiency gain, generalized extreme value (GEV) analysis is applied to a data set of keff values obtained without applying BA. It turns out that the extreme values of these keff values follow the Weibull distribution. Therefore, the theory of GEV guarantees the existence of the upper limit of these keff values, and the actually computed upper limit is indeed smaller than the top two keff values obtained from an order-of magnitude reduced number of BA-applied IRWF random media replicas. This means that the efficiency gain via BA has been confirmed by GEV analysis.

Journal Articles

The Behavior of a jet passing through a grid-type obstacle; An Experimental investigation

Abe, Satoshi; Shibamoto, Yasuteru

Annals of Nuclear Energy, 202, p.110461_1 - 110461_16, 2024/07

 Times Cited Count:0 Percentile:0.05

Journal Articles

Ultrasound-assisted removal of contaminants on stainless steel surfaces using nitrogen ultrafine bubble water

Nakahara, Masaumi; Watanabe, So; Kimura, Shuya; Sasaki, Misa*; Inagaki, Hiromitsu*; Moriguchi, Tetsuji*

Progress in Nuclear Energy, 172, p.105195_1 - 105195_8, 2024/07

A novel removal technique with ultrafine bubbles has been proposed for decommissioning of nuclear facilities. The performance of removal technology with ultrafine bubbles was evaluated in the removal experiments with non-radioactive materials, simulated contaminants precipitated Co oxides. To investigate the influence of difference in the chemical forms, the decontamination experiments were carried out with the fuel pin end plugs contaminated radioactive materials in a hot cell.

Journal Articles

Interaction of solute manganese and nickel atoms with dislocation loops in iron-based alloys irradiated with 2.8 MeV Fe ions at 400 $$^{circ}$$C

Nguyen, B. V. C.*; Murakami, Kenta*; Chena, L.*; Phongsakorn, P. T.*; Chen, X.*; Hashimoto, Takashi; Hwang, T.*; Furusawa, Akinori; Suzuki, Tatsuya*

Nuclear Materials and Energy (Internet), 39, p.101639_1 - 101639_9, 2024/06

Journal Articles

Study on the difference between B$$_{4}$$C powder and B$$_{4}$$C pellet regarding the eutectic reaction with stainless steel

Hong, Z.*; Ahmed, Z.*; Pellegrini, M.*; Yamano, Hidemasa; Erkan, N.*; Sharma, A. K.*; Okamoto, Koji*

Progress in Nuclear Energy, 171, p.105160_1 - 105160_13, 2024/06

 Times Cited Count:0 Percentile:0.05

In this study, it is found that the eutectic reaction between B$$_{4}$$C powder and stainless steel (SS) is considerably more rapid than that between the B$$_{4}$$C pellet and SS. The derived reaction rate constant values for powder and pellet cases are consistently based on the reference values. Also, a composition analysis using SEM/EDS was conducted for the detailed microstructures of the powder and pellet samples. In the powder case, only one thick layer is found as the reaction layer consisting of (Fe, Cr)B precipitate, including B$$_{4}$$C powder. In the pellet case, two layers are found in the reaction layer.

Journal Articles

CFD applications to pressurized thermal shock-related phenomena

Okagaki, Yuria; Hibiki, Takashi*; Shibamoto, Yasuteru

International Journal of Energy Research, 2024, p.5114542_1 - 5114542_37, 2024/04

Journal Articles

Simulation of a jet flow rectified by a grating-type structure using immersed boundary methods

Hirose, Yoshiyasu; Abe, Satoshi; Ishigaki, Masahiro*; Shibamoto, Yasuteru; Hibiki, Takashi*

Progress in Nuclear Energy, 169, p.105085_1 - 105085_13, 2024/04

 Times Cited Count:0 Percentile:0.05(Nuclear Science & Technology)

Journal Articles

Critical heat flux for downward flows in vertical round pipes

Hirose, Yoshiyasu; Shibamoto, Yasuteru; Hibiki, Takashi*

Progress in Nuclear Energy, 168, p.105027_1 - 105027_17, 2024/03

 Times Cited Count:1 Percentile:63.33(Nuclear Science & Technology)

Journal Articles

Intercalative and non-intercalative photo-recharge using all-solid-state cells for solar energy conversion and storage

Yoshimoto, Masataka*; Tamura, Kazuhisa; Watanabe, Kenta*; Shimizu, Keisuke*; Horisawa, Yuhei*; Kobayashi, Takeshi*; Tsurita, Hanae*; Suzuki, Kota*; Kanno, Ryoji*; Hirayama, Masaaki*

Sustainable Energy & Fuels (Internet), 8(6), p.1236 - 1244, 2024/03

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

Photo-rechargeable systems, which can efficiently convert and store solar energy into chemical energy within single devices, are essential to harness sunlight effectively. Photo-(de)intercalation plays a pivotal role in the functionality of photorechargeable systems. Nevertheless, the photo-(de)intercalation process has not been conclusively confirmed owing to potential interference from side reactions, such as the decomposition of liquid electrolytes and the elution of electrode materials. In this study, we successfully demonstrated photo-responsive Li$$^{+}$$-deintercalation using an all-solid-state thin-film battery comprised of epitaxially-grown anatase TiO$$_{2}$$ doped with Nb (a-TiO$$_{2}$$:Nb) as the cathode. Under light irradiation, Li$$^{+}$$-deintercalation occurred and was subsequently reversibly intercalated into a-TiO$$_{2}$$:Nb during discharge.

Journal Articles

High-temperature rupture failure of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka

Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Development of a formulation to predict molten core spreading in an LWR severe accident

Sahboun, N. F.; Matsumoto, Toshinori; Iwasawa, Yuzuru; Wang, Z.; Sugiyama, Tomoyuki

Annals of Nuclear Energy, 195, p.110145_1 - 110145_12, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Validation of the fast reactor plant dynamics analysis code Super-COPD using FFTF loss of flow without scram test #13

Hamase, Erina; Ohgama, Kazuya; Kawamura, Takumi*; Doda, Norihiro; Tanaka, Masaaki; Yamano, Hidemasa

Annals of Nuclear Energy, 195, p.110157_1 - 110157_14, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To validate the fast reactor plant dynamics analysis code Super-COPD for the loss of flow without scram (LOFWOS) event, we participated in the IAEA benchmark for the LOFWOS test No.13 performed at the FFTF as one of the passive safety demonstration test. In the blind phase, there were challenges to reproduce outlet temperatures of fuel assemblies and the total reactivity. To improve the evaluation accuracy of them, the whole core model considering the radial heat transfer and interwrapper flow and the simplified assembly bowing reactivity model were introduced. As a result of the final phase, the second peak of outlet temperatures was reproduced successfully, and the total reactivity could generally follow the measured data. Super-COPD was validated for the LOFWOS event.

Journal Articles

Opposing mixed convection heat transfer for turbulent single-phase flows

Motegi, Kosuke; Shibamoto, Yasuteru; Hibiki, Takashi*; Tsukamoto, Naofumi*; Kaneko, Junichi*

International Journal of Energy Research, 2024, p.6029412_1 - 6029412_22, 2024/01

 Times Cited Count:0 Percentile:0.05(Energy & Fuels)

Convection, wherein forced and natural convections are prominent, is known as mixed convection. Specifically, when a forced convection flow is downward, this flow is called opposing flow. Several heat transfer correlations have been reported related to single-phase opposing flow; however, these correlations are based on experiments conducted in various channel geometries, working fluids, and thermal flow parameter ranges. Because the definition of nondimensional parameters and their validated range confirmed by experiments differ for each correlation reported in previous studies, establishing a guideline for deciding which correlation should be selected based on its range of applicability and extrapolation performance is important. This study reviewed the existing heat transfer correlations for turbulent opposing-flow mixed convection and the single-phase heat transfer correlations implemented in the thermal-hydraulic system codes. Furthermore, we evaluated the predictive performance of each correlation by comparing them with the experimental data obtained under various experimental conditions. The Jackson and Fewster, Churchill, and Swanson and Catton correlations (Int. J Heat Mass Transf., 1987) can accurately predict all the experimental data. The effect of the difference in the thermal boundary conditions, i.e., uniform heat flux and uniform wall temperature, on the turbulent mixed-convection heat transfer coefficient is not substantial. We confirmed that heat transfer correlations using the hydraulic-equivalent diameter as a characteristic length can be used for predictions regardless of channel-geometry differences. Furthermore, correlations described based on nondimensional dominant parameters can be used for predictions regardless of the differences in working fluids.

Journal Articles

Local structural changes in V-Ti-Cr alloy hydrides with hydrogen absorption/desorption cycling

Ikeda, Kazutaka*; Sashida, Sho*; Otomo, Toshiya*; Oshita, Hidetoshi*; Honda, Takashi*; Hawai, Takafumi*; Saito, Hiraku*; Ito, Shinichi*; Yokoo, Tetsuya*; Sakaki, Koji*; et al.

International Journal of Hydrogen Energy, 51(Part A), p.79 - 87, 2024/01

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

Journal Articles

Experiment and new analysis model simulating in-place cooling of a degraded core in severe accidents of sodium-cooled fast reactors

Imaizumi, Yuya; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Matsuba, Kenichi; Akaev, A.*; Mikisha, A.*; Baklanov, V.*; Vurim, A.*

Annals of Nuclear Energy, 194, p.110107_1 - 110107_11, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Petrophysical properties of representative geological rocks encountered in carbon storage and utilization

Hu, Q.*; Wang, Q. M.*; Zhang, T.*; Zhao, C.*; Iltaf, K. H.*; Liu, S. Q.*; Fukatsu, Yuta

Energy Reports (Internet), 9, p.3661 - 3682, 2023/12

 Times Cited Count:4 Percentile:78.27(Energy & Fuels)

Journal Articles

Effect of molybdenum release on UO$$_{2}$$/MOX fuel oxidation under severe light water reactor accident conditions

Liu, J.; Miwa, Shuhei; Karasawa, Hidetoshi; Osaka, Masahiko

Nuclear Materials and Energy (Internet), 37, p.101532_1 - 101532_5, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Numerical interpretation of thermal desorption spectra of hydrogen from high-carbon ferrite-austenite dual-phase steel

Ebihara, Kenichi; Sekine, Daiki*; Sakiyama, Yuji*; Takahashi, Jun*; Takai, Kenichi*; Omura, Tomohiko*

International Journal of Hydrogen Energy, 48(79), p.30949 - 30962, 2023/09

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

To understand hydrogen embrittlement (HE), which is one of the stress corrosion cracking of steel materials, it is necessary to know the H distribution in steel, which can be effectively interpreted by numerical simulation of thermal desorption spectra. In weld metals and TRIP steels, residual austenite significantly influences the spectra, but a clear H distribution is not well known. In this study, an originally coded two-dimensional model was used to numerically simulate the previously reported spectra of high-carbon ferritic-austenitic duplex stainless steels, and it was found that H is mainly trapped at the carbide surface when the amount of H in the steel is low and at the duplex interface when the amount of H is high. It was also found that the thickness dependence of the H desorption peak for the interface trap site is caused by a different reason than the conventional one.

954 (Records 1-20 displayed on this page)