検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Nuclear data activities at the n_TOF facility at CERN

Gunsing, F.*; 原田 秀郎; 木村 敦; n_TOF Collaboration*; 他141名*

European Physical Journal Plus, 131(10), p.371_1 - 371_13, 2016/10

 被引用回数:9 パーセンタイル:45.56(Physics, Multidisciplinary)

Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility, n_TOF, has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement program in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented.

論文

Measurement of the direct particle transport through stochastic media using neutron resonance transmission analysis

Becker, B.*; Kopecky, S.*; 原田 秀郎; Schillebeeckx, P.*

European Physical Journal Plus, 129(4), p.58_1 - 58_9, 2014/04

 被引用回数:11 パーセンタイル:28.13(Physics, Multidisciplinary)

A measurement of the uncollided neutron flux passing through a sample containing a stochastic mixture of tungsten and sulfur grains has been performed using neutron resonance transmission analysis in the 3-200 eV energy region. The impact of the heterogeneous characteristic of the sample is shown based on a comparison of the measurement with a calculated transmission spectrum of a homogeneous sample, which was verified by a measurement with a homogeneous metallic disc. By using a single strong resonance of tungsten, the particle self-shielding factor between 0.2-0.9 was directly measured. The experimental data have been compared with model calculations using the Markovian Levermore-Pomraning model. The measured transmission has been used to determine the effective characteristic chord length and volume fraction of the tungsten grains within the sample.

2 件中 1件目~2件目を表示
  • 1