Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Conceptual uncertainties in modelling the interaction between engineered and natural barriers of nuclear waste repositories in crystalline rocks

Finsterle, S.*; Lanyon, B.*; ${AA}$kesson, M.*; Baxter, S.*; Bergstr$"o$m, M.*; Bockg${aa}$rd, N.*; Dershowitz, W.*; Dessirier, B.*; Frampton, A.*; Fransson, ${AA}$.*; et al.

Geological Society, London, Special Publications, No.482, p.261 - 283, 2019/00

 Times Cited Count:2 Percentile:26.15

Nuclear waste disposal in geological formations relies on a multi-barrier concept that includes engineered components which in many cases includes a bentonite buffer surrounding waste packages and the host rock. An SKB's (Swedish Nuclear Fuel and Waste Management Co.) Modelling Task Force project facilitated to improve the overall understanding of rock - bentonite interactions, as 11 teams used different conceptualisations and modelling tools to analyse the in-situ experiment at the $"A$ps$"o$ Hard Rock Laboratory. The exercise helped identify conceptual uncertainties that led to different assessments of the relative importance of the engineered and natural barrier subsystems and of aspects that need to be better understood to arrive at reliable predictions of bentonite wetting.

Journal Articles

A Study of methods to prevent piping and erosion in buffer materials intended for a vertical deposition hole at the Horonobe Underground Research Laboratory

Jo, Mayumi*; Ono, Makoto*; Nakayama, Masashi; Asano, Hidekazu*; Ishii, Tomoko*

Geological Society Special Publications, 482, 16 Pages, 2018/09

 Times Cited Count:1 Percentile:50.57

Journal Articles

Preliminary results for natural groundwater colloids in sedimentary rocks of the Horonobe Underground Research Laboratory, Hokkaido, Japan

Sasamoto, Hiroshi; Onda, Shingo*

Geological Society Special Publications, 482, 13 Pages, 2018/09

 Times Cited Count:1 Percentile:50.57

Colloid concentration is an important parameter in models of colloid-facilitated transport. The purpose of present study is to characterize colloid concentrations and colloid stability in natural groundwater from the Horonobe Underground Research Laboratory (URL) as for development of a procedure. The particle sizes of colloids in groundwaters from the Horonobe URL range from several nm to ca. 500 nm, with a mode particle size of ca. 120 nm. Evaluation of colloid stability by DLVO theory suggests that larger colloids (i.e., $$>$$100 nm in diameter) would be more stable than smaller colloids in some groundwaters. The estimated colloid particle concentrations ranged from 2.33$$times$$10$$^{6}$$ to 1.12$$times$$10$$^{8}$$ pt/mL, and mass concentrations were estimated to range from 45 to 1540 $$mu$$g/L for diameters greater than 100 nm. Colloids in Horonobe groundwaters appear to be less stable, with a moderate potential for transport, than colloids investigated in similar international studies. This reduced stability may be due to relatively higher ionic strengths and moderate dissolved organic concentrations in Horonobe groundwaters compared to their international counterparts.

3 (Records 1-3 displayed on this page)
  • 1