Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of SiC/SiC composites from Si-based polymer blend by radiation application

Sugimoto, Masaki; Tanaka, Shigeru; Ito, Masayoshi*; Okamura, Kiyohito*

High Temperature Ceramic Matrix Composites, p.357 - 361, 2001/10

no abstracts in English

Journal Articles

Fine silicon carbide fiber synthesized from a silicon-based polymer blend using radiation curing

Idesaki, Akira; Sugimoto, Masaki; Tanaka, Shigeru; Morita, Yosuke; Narisawa, Masaki*; Okamura, Kiyohito*; Ito, Masayoshi*

High Temperature Ceramic Matrix Composites, p.35 - 40, 2001/00

Silicon carbide (SiC) fiber, which is one of the likeliest candidates as a reinforcement fiber of ceramic matrix composites (CMCs), is synthesized from polycarbosilane (PCS). The diameter of thus SiC fibers is 10-15 $$mu$$m. In order to fabricate CMCs with 3-dimensional complex shapes, it is important to develop a SiC fiber with diameter of less than 10 $$mu$$m, flexibility, and high strength. In order to improve the spinnability of precursor polymer, we have blended polyvinylsilane (PVS), which is a liquid polymer at room temperature, to PCS as a spinning additive. According to relationship between temperature and melt viscosity of the polymer blend, it was found that the polymer can be melt-spun at about 490K, 110K lower than PCS (about 600K), and that the spinnability of the polymer is improved by blending PVS. Fine polymer fiber was obtained from the polymer blend, and finally, very fine SiC fiber with the average diameter of 6 $$mu$$m was synthesized from the PCS-PVS polymer blend.

Journal Articles

Reaction mechanisms of SiC fiber synthesis from radiation cured polycarbosilane fiber

Sugimoto, Masaki; *; Seguchi, Tadao

High-Temperature Ceramic-Matrix Composites II (HT-CMC2), 0, p.293 - 298, 1995/00

no abstracts in English

Journal Articles

Silicon nitride fiber synthesis from polycarbosilane fiber by radiation curing and pyrolysis under ammonia

*; *; Kasai, Noboru; Seguchi, Tadao; *

High-Temperature Ceramic-Matrix Composites II (HT-CMC2), 0, p.281 - 286, 1995/00

no abstracts in English

Journal Articles

Oxygen-free ceramic fibers from organosilicon precursors and E-beam curing

*; *; Seguchi, Tadao

High-Temperature Ceramic-Matrix Composites II (HT-CMC2), 0, p.65 - 74, 1995/00

no abstracts in English

Journal Articles

Heat resistant SiC-fiber synthesis and reaction mechanisms from radiation-cured polycarbosilane fiber

Seguchi, Tadao; Sugimoto, Masaki*; *

High Temperature Ceramic Matrix Composites; 6th European Conf. on Composite Materials: HT-CMC, p.51 - 57, 1993/00

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1