Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Simplified Cluster Analysis of Electron Track Structure for Estimating Complex DNA Damage Yields

Matsuya, Yusuke; Nakano, Toshiaki*; Kai, Takeshi; Shikazono, Naoya*; Akamatsu, Ken*; Yoshii, Yuji*; Sato, Tatsuhiko

International Journal of Molecular Sciences (Internet), 21(5), p.1701_1 - 1701_13, 2020/03

 Times Cited Count:4 Percentile:65.16(Biochemistry & Molecular Biology)

Among various DNA damage induced after irradiation, clustered damage composed of at least two vicinal lesions within from 10 to 20 base pairs is recognized as fatal damage to human tissue. Such clustered damage yields have been evaluated by means of computational approaches; however, the simulation validity has not been sufficiently made yet. Meanwhile, the experimental technique to detect clustered DNA damage has been evolved in the recent decades, so both approaches with simulation and experiment get used to be available for investigating clustered damage recently. In this study, we have developed a simple model for estimating clustered damage yield based on the spatial density of ionization and electronic excitation events obtained by the PHITS code, and compared the computational results to the experimental clustered damage coupled with base damage (BD) measured by gel electrophoresis and atomic force microscopy. The computational results agreed well with experimental fractions of clustered damage of strand breaks (SB) and BD, when the yield ratio of BD/SSB is assumed to be 1.3. From the comparison of complex DNA double-strand break coupled with BDs between simulation and experimental data, it was suggested that aggregation degree of the events along electron track reflects the complexity of DNA damage. The resent simulation enables to quantify the type of clustered damage which cannot be measured in in vitro experiment, which succeeded in interpreting the experimental detection efficiency for clustered BD.

Journal Articles

Identification of potential biomarkers of radiation exposure in blood cells by capillary electrophoresis time-of-flight mass spectrometry

Sun, L.*; Inaba, Yohei*; Kanzaki, Norie; Bekal, M.*; Chida, Koichi*; Moritake, Takashi*

International Journal of Molecular Sciences (Internet), 21(3), p.812_1 - 812_12, 2020/01

 Times Cited Count:3 Percentile:39.8(Biochemistry & Molecular Biology)

Biodosimetry is a useful method to estimate the personal dose after unexpected ionizing radiation exposure. Studies have been reported that metabolites are useful markers for biodosimetry. However, these studies only focused on non-cellular biofluid (e.g., serum, plasma, urine, or saliva). Blood cell metabolites may reflect the health status or environmental stresses differently than metabolites of plasma. Here, we report changes in the metabolites of blood cells after X-ray irradiation of C57BL/6J mice. Blood cell metabolites were measured by capillary electrophoresis time-of-flight mass spectrometry. We found that 106 metabolites were changed significantly after irradiation. We identified that 2'-deoxycytidine, choline, and N6-acetyllysine as potentially useful discriminating markers of radiation exposure. These metabolites have not been reported previously. Furthermore, we established a prediction panel of the exposure dose using stepwise regression analysis. These findings suggest that blood cell metabolites may be useful biomarkers to estimate exposure doses during unexpected radiation incidents.

Journal Articles

Route and regulation of zinc, cadmium, and iron transport in rice plants (${it Oryza sativa}$ L.) during vegetative growth and grain filling; Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification

Yoneyama, Tadakatsu*; Ishikawa, Satoru*; Fujimaki, Shu

International Journal of Molecular Sciences (Internet), 16(8), p.19111 - 19129, 2015/08

AA2015-0336.pdf:1.94MB

 Times Cited Count:72 Percentile:80.96(Biochemistry & Molecular Biology)

3 (Records 1-3 displayed on this page)
  • 1