Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 250

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Recent status of the cryogenic sample environment at the MLF, J-PARC

Ishikado, Motoyuki*; Takahashi, Ryuta*; Yamauchi, Yasuhiro*; Nakamura, Masatoshi*; Ishimaru, Sora*; Yamauchi, Sara*; Kawamura, Seiko; Kira, Hiroshi*; Sakaguchi, Yoshifumi*; Watanabe, Masao; et al.

JPS Conference Proceedings (Internet), 41, p.011010_1 - 011010_7, 2024/05

Journal Articles

Application of control software framework to sample environment equipment in J-PARC MLF

Hasemi, Hiroyuki; Takahashi, Ryuta*; Yamauchi, Yasuhiro*; Ishikado, Motoyuki*; Kawamura, Seiko; Komine, Ryota

JPS Conference Proceedings (Internet), 41, p.011003_1 - 011003_5, 2024/03

Journal Articles

New standard for low temperature sample environment at JAEA/JRR-3

Kaneko, Koji; Tabata, Chihiro; Hagihara, Masato; Yamauchi, Hiroki; Oba, Yojiro; Kumada, Takayuki; Kubota, Masato; Kojima, Yuki*; Nabatame, Nozomi; Sasaki, Miki; et al.

JPS Conference Proceedings (Internet), 41, p.011015_1 - 011015_6, 2024/03

Journal Articles

Enhancement of an effective spin-orbit coupling in a correlated metal

Kubo, Katsunori

JPS Conference Proceedings (Internet), 38, p.011161_1 - 011161_6, 2023/05

Journal Articles

Low temperature behavior of itinerant ferromagnet realized in extended Nagaoka mechanism

Onishi, Hiroaki; Miyashita, Seiji*

JPS Conference Proceedings (Internet), 38, p.011157_1 - 011157_6, 2023/05

Journal Articles

Magnetic and transport properties of the pseudobrookite Al$$_{1-x}$$Ti$$_{2+x}$$O$$_{5}$$ single crystals

Takahama, Ryusei*; Arizono, Mitsutoshi*; Indo, Daigo*; Yoshinaga, Taisei*; Terakura, Chieko*; Takeshita, Nao*; Shirasaki, Takumi*; Noda, Masaaki*; Kuwahara, Hideki*; Kajimoto, Ryoichi; et al.

JPS Conference Proceedings (Internet), 38, p.011114_1 - 011114_6, 2023/05

Journal Articles

Magnetic ordering and structural phase transitions of Nd$$_{3}$$$$T$$$$_{4}$$Sn$$_{13}$$ ($$T$$ = Rh and Ir)

Shimoda, Ami*; Iwasa, Kazuaki*; Kuwahara, Keitaro*; Sagayama, Hajime*; Nakao, Hironori*; Ishikado, Motoyuki*; Ohara, Takashi; Nakao, Akiko*; Hoshikawa, Akinori*; Ishigaki, Toru*

JPS Conference Proceedings (Internet), 38, p.011091_1 - 011091_6, 2023/05

Journal Articles

Cu $$K$$-edge X-ray absorption fine structure study of $$T'$$-type $$RE$$$$_{2}$$CuO$$_{4+alpha-delta}$$ ($$RE$$ = Rare Earth); Toward unified understanding of electronic state of $$T'$$-type cuprate

Chen, Y.*; Asano, Shun*; Wang, T.*; Xie, P.*; Kitayama, Shinnosuke*; Ishii, Kenji*; Matsumura, Daiju; Tsuji, Takuya; Taniguchi, Takanori*; Fujita, Masaki*

JPS Conference Proceedings (Internet), 38, p.011050_1 - 011050_6, 2023/05

Journal Articles

Observation of Eu adsorption band in the CMPO/SiO$$_{2}$$-P column by neutron resonance absorption imaging

Miyazaki, Yasunori; Watanabe, So; Nakamura, Masahiro; Shibata, Atsuhiro; Nomura, Kazunori; Kai, Tetsuya; Parker, J. D.*

JPS Conference Proceedings (Internet), 33, p.011073_1 - 011073_7, 2021/03

Neutron resonance absorption imaging was adapted to observe the Eu band adsorbed in the CMPO/SiO$$_{2}$$-P column for minor actinide recovery by extraction chromatography. Several wet columns were prepared by either light water or heavy water and compared with the dry column to evaluate the neutron transmission. The neutron transmission spectra showed that 45% was transmitted through the dry column while 20% and 40% were transmitted through the wet columns of light water and heavy water, respectively. The results indicated that heavy water is more applicable than light water to observe the Eu adsorption band in the CMPO/SiO$$_{2}$$-P column.

Journal Articles

Visualization of the boron distribution in core material melting and relocation specimen by neutron energy resolving method

Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken

JPS Conference Proceedings (Internet), 33, p.011075_1 - 011075_6, 2021/03

Journal Articles

1.2-MW-equivalent high-intensity beam tests in J-PARC RCS

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

JPS Conference Proceedings (Internet), 33, p.011018_1 - 011018_6, 2021/03

no abstracts in English

Journal Articles

Microstructure distribution of Japanese sword cross sections analyzed by the diffractometer TAKUMI at J-PARC

Oikawa, Kenichi; Harjo, S.; Pham, A. H.*; Kawasaki, Takuro; Morito, Shigekazu*; Kiyanagi, Yoshiaki*; Shinohara, Takenao; Kai, Tetsuya; Oba, Takuya*; Ito, Masakazu*

JPS Conference Proceedings (Internet), 33, p.011062_1 - 011062_6, 2021/03

Journal Articles

Behavior of tritium release from a stainless vessel of the mercury target as a spallation neutron source

Kasugai, Yoshimi; Sato, Koichi; Takahashi, Kazutoshi*; Miyamoto, Yukihiro; Kai, Tetsuya; Harada, Masahide; Haga, Katsuhiro; Takada, Hiroshi

JPS Conference Proceedings (Internet), 33, p.011144_1 - 011144_6, 2021/03

A spallation neutron source with a mercury target has been in operation at the Materials and Life Science Experimental Facility of J-PARC since 2008. The target vessel made of stainless steel is required to be exchanged periodically due to radiation damage etc. In this presentation, tritium gas release observed in the first series of exchange work in 2011 and the analytical results will be shown.

Journal Articles

Feasibility study of PGAA for boride identification in simulated melted core materials

Tsuchikawa, Yusuke; Abe, Yuta; Oishi, Yuji*; Kai, Tetsuya; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Kimura, Atsushi; Nakamura, Shoji; Harada, Masahide; et al.

JPS Conference Proceedings (Internet), 33, p.011074_1 - 011074_6, 2021/03

In the decommissioning of the Fukushima-Daiichi (1F) Nuclear Power Plant, it is essential to understand characteristics of the melted core materials. The estimation of boride in the real debris is of great importance to develop safe debris removal plans. Hence, it is required to investigate the amount of boron in the melted core materials with nondestructive methods. Prompt gamma-ray activation analysis (PGAA) is one of the useful techniques to determine the amount of borides by means of the 478 keV prompt gamma-ray from neutron absorption reaction of boron. Moreover, it is well known that the width of the 478 keV gamma-ray peak is typically broadened due to the Doppler effect. The degree of the broadening is affected by coexisting materials, and can be recognized by the width of the prompt gamma-ray peak. As a feasibility study, the prompt gamma-ray from boride samples were measured using the ANNRI, NOBORU, and RADEN beamlines at the Materials and Life Science Experimental Facility (MLF) of Japan Proton Accelerator Complex (J-PARC).

Journal Articles

Improvement in sputtering rate uniformity over large deposition area of large-scale ion beam sputtering system

Maruyama, Ryuji; Yamazaki, Dai; Akutsu, Kazuhiro*; Hanashima, Takayasu*; Miyata, Noboru*; Aoki, Hiroyuki; Soyama, Kazuhiko

JPS Conference Proceedings (Internet), 33, p.011092_1 - 011092_6, 2021/03

no abstracts in English

Journal Articles

Upgrade history and present status of the general control system for the Materials and Life Science Experimental Facility at J-PARC

Sakai, Kenji; Oi, Motoki; Haga, Katsuhiro; Kai, Tetsuya; Nakatani, Takeshi; Kobayashi, Yasuo*; Watanabe, Akihiko*

JPS Conference Proceedings (Internet), 33, p.011151_1 - 011151_6, 2021/03

For safely and efficiently operating a spallation neutron source and a muon target, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF), GCS administers operation processes and interlocks of many instruments for various operation statuses. It consists of several subsystems such as an integral control system (ICS), interlock systems (ILS), shared servers, network system, and timing distribution system (TDS). Although GCS is an independent system that controls the target stations, it works closely with the control systems of other facilities in J-PARC. Since the first beam injection in 2008, GCS has operated stably without any serious troubles after modification based on commissioning for operation and control. Then, significant improvements in GCS such as upgrade of ICS by changing its framework software and function enhancement of ILS were proceeded until 2015, in considering sustainable long-term operation and maintenance. In recent years, many instruments in GCS have replaced due to end of production and support of them. In this way, many modifications have been proceeded in the entire GCS after start of beam operation. Under these situation, it is important to comprehend upgrade history and present status of GCS in order to decide its upgrade plan for the coming ten years. This report will mention upgrade history, present status and future agenda of GCS.

Journal Articles

A Plan of materials irradiation facility at J-PARC for development of ADS and high-power accelerator facilities

Maekawa, Fujio

JPS Conference Proceedings (Internet), 33, p.011042_1 - 011042_6, 2021/03

Development of beam window (BW) materials is one of crucial issues in development of accelerator driven nuclear transmutation systems (ADS). The BW is exposed to high energy protons and spallation neutrons, and also to corrosive lead-bismuth eutectic (LBE) alloy at high temperature of about 500$$^{circ}$$C. Recently, not only high-power accelerators but also high-power targets are the rate-limiting factor for increasing the power of accelerator facilities in terms of radiation damage and heat removal. To study radiation damage on BW and target materials for high-power accelerator facilities including ADS, we are planning a materials irradiation facility by utilizing the proton beam of 400 MeV and 250 kW provided by the J-PARC's Linac. The target is flowing LBE alloy which is a candidate target and coolant material of ADS. When a steel sample is irradiated in the target for one year, the sample receives radiation damage of about 10 dpa at maximum which is equivalent to the yearly radiation damage of ADS's BW. In the current facility concept, the facility is equipped with a hot-laboratory for efficient post-irradiation examination. The facility will be outlined in this presentation.

Journal Articles

Recent status & improvements of the RCS vacuum system

Kamiya, Junichiro; Kotoku, Hirofumi; Hikichi, Yusuke*; Takahashi, Hiroki; Yamamoto, Kazami; Kinsho, Michikazu; Wada, Kaoru*

JPS Conference Proceedings (Internet), 33, p.011023_1 - 011023_6, 2021/03

The vacuum system is the key for the stable high power beam operation in J-PARC 3 GeV rapid cycling synchrotron (RCS), because the gas molecules in the beam line make the beam loss due to the scattering. The more than 10 years operation of the RCS vacuum system showed that the ultra-high vacuum (UHV) has been stably maintained by the several developments. The challenges for lower beam line pressure will exist in a future operation with higher beam power. For such challenge, a TMP with a rotor of titanium alloy, which have much higher mechanical strength than aluminum allow for the normal rotter, has been developed. Overcoming the difficulties of the machining performance of the titanium alloy rotor was successfully manufactured. We will report the summary of the 10 years operation of the RCS vacuum system and the incoming developments towards the XHV.

Journal Articles

Unified mercury radioactivity monitoring system at J-PARC and its operation experiences

Harada, Masahide; Sekijima, Mitsuaki*; Morikawa, Noriyuki*; Masuda, Shiho; Kinoshita, Hidetaka; Sakai, Kenji; Kai, Tetsuya; Kasugai, Yoshimi; Muto, Giichi*; Suzuki, Akio*; et al.

JPS Conference Proceedings (Internet), 33, p.011099_1 - 011099_6, 2021/03

In MLF at J-PARC, a unified mercury radioactivity monitor (UHAM) is installed to find an indication of failure of the mercury target and loop system by detecting radioactive materials leaked from the system with a $$gamma$$-ray energy analysis with Germanium semi-conductor detectors (Ge detectors). It is composed of three units of sampling port and radiation monitors: (1) HAM for interstitial helium gas layer between the mercury vessel and surrounding water shroud of the mercury target, (2) CAM for atmosphere in the hot cell where the target loop is operated and (3) VAM for helium gas in the helium vessel where the target vessel is installed. Once any leakages of radioactive materials are detected, an alarm signal is issued immediately to the accelerator control system to stop beam operation. Software and hardware have been upgraded yearly. For example, two Ge detectors are used for HAM for redundancy, NaI Scintillation detectors are also used as supplemental for the Ge detector to keep availability of the system for high counting rate event. In April 2015, the UHAM activated when a small water coolant leakage from the water shroud of the mercury target occurred. VAM detected an abnormal increase of the counting rate in the helium vessel. It was also indicated that the measured radioactive nuclides were generated from the activation of the coolant (water) in the water shroud and not from the mercury.

Journal Articles

High intensity measurement issues at the J-PARC RCS

Hayashi, Naoki; Yoshimoto, Masahiro; Hatakeyama, Shuichiro*

JPS Conference Proceedings (Internet), 33, p.011017_1 - 011017_6, 2021/03

The J-PARC Rapid-Cycling Synchrotron (RCS) is designed as an 1-MW high intensity proton accelerator. Beam intensity diagnostics is an important device to prove the accelerator performance. The RCS has two instruments based on different principles, namely Direct-current Current Transformer (DCCT) and Slow-CT (SCT). It was realized that SCT showed strange behavior when continuous 1-MW demonstration had been performed, although there were no problem under 1-MW equivalent operation with single shot. The origin of the problem seems to be limited band width at higher frequency and asymmetric circulating beam current pattern. On the other hand, DCCT also showed output signal saturation with 1.2-MW equivalent single shot. But, SCT worked properly with this conditions. These problems have to be solved for future continuous 1-MW and higher intensity operation. On this presentation, we will show beam and test pulse data and discuss about how to measure these problems.

250 (Records 1-20 displayed on this page)