Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Cathodoluminescence of cerium dioxide; Combined effects of the electron beam energy and sample temperature

Constantini, J.-M.*; Seo, P.*; Yasuda, Kazuhiro*; Bhuian, AKM S. I.*; Ogawa, Tatsuhiko; Gourier, D.*

Journal of Luminescence, 226, p.117379_1 - 117379_10, 2020/10

 Times Cited Count:9 Percentile:53.99(Optics)

Cathodo-luminescence is used for detection of lattice defects, in particular oxygen vacancies in ceramics induced by electrons. However, how oxygen vacancy production efficiency depends on sample temperature, incoming electron flux, and electron energy was not clear. In this study, oxygen vacancies were made in the specimens of CeO$$_{2}$$ by irradiation of 400-1250 keV electrons and the cathodoluminescence from thus induced vacancies were observed by photo-fiber probe combined with CCD. As the result, the dependence of luminescence intensity on specimen temperature depends on the carrier trapping frequency and luminescence efficiency while luminescence center production/annihilation speed determines the dependency on the incoming electron flux. Moreover, radiation transport calculation conducted by the particle transport simulation code PHITS indicates that the number of electrons above the defect production threshold energy is vital to explain incoming electron energy dependence.

Journal Articles

Cathodoluminescence induced in oxides by high-energy electrons; Effects of beam flux, electron energy, and temperature

Constantini, J.-M.*; Ogawa, Tatsuhiko; Bhuian, A. S. I.*; Yasuda, Kazuhiro*

Journal of Luminescence, 208, p.108 - 118, 2019/04

 Times Cited Count:5 Percentile:32.20(Optics)

Cathodo-luminescence is used for detection of lattice defects, in particular oxygen vacancies in ceramics induced by electrons. However, how oxygen vacancy production efficiency depends on sample temperature, incoming electron flux, and electron energy was not clear. In this study, oxygen vacancies were made in the specimens of Al$$_{2}$$O$$_{3}$$, ZrO$$_{2}$$:Y(Yttrium stabilized zirconia), MgAl$$_{2}$$O$$_{4}$$, and TiO$$_{2}$$ by irradiation of 400-1250keV electrons and the cathodoluminescence from thus induced vacancies were observed by photo-fiber probe combined with CCD. As the result, the dependence of luminescence intensity on specimen temperature depends on the carrier trapping frequency and luminescence efficiency while luminescence center production/annihilation speed determines the dependency on the incoming electron flux. Moreover, radiation transport calculation conducted by the particle transport simulation code PHITS indicates that the number of electrons above the defect production threshold energy is vital to explain incoming electron energy dependence.

Journal Articles

Influence of linear energy transfer on the scintillation decay behavior in a lithium glass scintillator

Koshimizu, Masanori*; Iwamatsu, Kazuhiro*; Taguchi, Mitsumasa; Kurashima, Satoshi; Kimura, Atsushi; Yanagida, Takayuki*; Fujimoto, Yutaka*; Watanabe, Kenichi*; Asai, Keisuke*

Journal of Luminescence, 169(Part B), p.678 - 681, 2016/01

We analyzed the effects of linear energy transfer (LET) on the scintillation properties of a Li glass scintillator, GS20. The scintillation time profiles were measured by using pulsed ion beams having different LETs. The rise in the scintillation time profiles was faster for higher LET, whereas the decay part was not significantly different for largely different LETs. The LET effects in the rise was ascribed to the effects of excited states interaction during the energy transfer process from the host glass to the luminescent centers, Ce$$^{3+}$$ ions. Supposing that the light yield decreases with LET, the fast rise at high LET was explained in terms of the competition between the energy transfer and the quenching due to the excited states interaction.

Journal Articles

A Spectroscopic comparison of samarium-doped LiYF$$_{4}$$ and KY$$_{3}$$F$$_{10}$$

Wells, J. P.*; Sugiyama, Akira; Han, T. P. J.*; Gallagher, H. G.*

Journal of Luminescence, 87-89, p.1029 - 1031, 2000/05

 Times Cited Count:10 Percentile:47.31(Optics)

no abstracts in English

Journal Articles

Laser site selective excitation of KY$$_{3}$$F$$_{10}$$ doped with samarium

Wells, T. P. R.*; Sugiyama, Akira; Han, T. P. J.*; Gallagher, H. G.*

Journal of Luminescence, 85, p.91 - 102, 1999/00

 Times Cited Count:31 Percentile:77.80(Optics)

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1