Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tuya, D.; Nagaya, Yasunobu
Journal of Nuclear Engineering (Internet), 4(4), p.691 - 710, 2023/11
The Monte Carlo method is used to accurately estimate various quantities such as k-eigenvalue and integral neutron flux. However, when a distribution of a quantity is desired, the Monte Carlo method does not typically provide continuous distribution. Recently, the functional expansion tally and kernel density estimation methods have been developed to provide continuous distribution. In this paper, we propose a method to estimate a continuous distribution of a quantity using artificial neural network (ANN) model with Monte Carlo-based training data. As a proof of concept, a continuous distribution of iterated fission probability (IFP) is estimated by ANN models in two systems. The IFP distributions by the ANN models were compared with the Monte Carlo-based data and the adjoint angular neutron fluxes by the PARTISN code. The comparisons showed varying degrees of agreement or discrepancy; however, it was observed that the ANN models learned the general trend of the IFP distributions.
Watanabe, Tadashi*; Katsuyama, Jinya; Mano, Akihiro
International Journal of Nuclear and Quantum Engineering (Internet), 13(11), p.516 - 519, 2019/10
The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.
Nakahara, Masaumi; Watanabe, So; Ogi, Hiromichi*; Shibata, Atsuhiro; Nomura, Kazunori
International Journal of Nuclear and Quantum Engineering (Internet), 13(4), p.191 - 194, 2019/04
High level radioactive solid waste is reduced the volume or stabilized in the Chemical Processing Facility in the Japan Atomic Energy Agency. A plastic product is molten with a heating mantle and reduced the volume. A non-flammable such as metal is cut with a band saw machine for reducing the volume. A used adsorbent in the extraction chromatograph process was heated with an electric furnace using non-radioactive materials, and the experimental result suggests that organic materials in the used adsorbent were decomposed stably.
Watanabe, So; Ogi, Hiromichi*; Shibata, Atsuhiro; Nomura, Kazunori
International Journal of Nuclear and Quantum Engineering (Internet), 13(4), p.169 - 174, 2019/04
As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH ion in the feed solution was successfully concentrated, and NH ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.
Nomura, Kazunori; Ogi, Hiromichi*; Nakahara, Masaumi; Watanabe, So; Shibata, Atsuhiro
International Journal of Nuclear and Quantum Engineering (Internet), 13(5), p.209 - 212, 2019/00