Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 2327

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

An Experimental investigation of influencing chemical factors on Cs-chemisorption behavior onto stainless steel

Nishioka, Shunichiro; Nakajima, Kunihisa; Suzuki, Eriko; Osaka, Masahiko

Journal of Nuclear Science and Technology, 56(11), p.988 - 995, 2019/11

In order to contribute to improvement of Cs chemisorption model used in severe accident analysis codes, the influence of chemical factors (temperature, atmosphere, concentration of affecting chemical elements etc.) on the Cs chemisorption behaviour onto stainless steel was investigated experimentally. It was found that the surface reaction rate constant used in the current Cs-chemisorption model was influenced by not only temperature, as already known, but also atmosphere, cesium hydroxide (CsOH) concentration in the gas phase and silicon content in SS304. Such chemical factors should be considered for the construction of the improved Cs-chemisorption model. Another important finding is that the chemisorption behavior at lower temperatures, around 873 K, could differ from those above 1073 K. Namely, Cs-Fe-O compounds would form as the main Cs-chemisorbed compounds at 873 K while Cs-Si-Fe-O compounds at more than 1073 K.

Journal Articles

Formation mechanisms of insoluble Cs particles observed in Kanto district four days after Fukushima Daiichi NPP accident

Hidaka, Akihide

Journal of Nuclear Science and Technology, 56(9-10), p.831 - 841, 2019/09

The insoluble Cs particles (Type A) were firstly observed in Tsukuba-city on the morning of March 15. The particles have been considered to be generated in RPV of Unit 2 by evaporation/condensation based on the measured $$^{134}$$Cs/$$^{137}$$Cs ratio and the core temperatures of each unit. However, the Type A particles with smaller diameter than the Type B particles of Unit 1 origin, are covered by almost pure silicate glass and have a trace of the quenching. This indicates that the particles could have been generated due to the melting of the HEPA filter in SGTS by the fire of H$$_{2}$$ detonation at Unit 3, and atomization followed by quenching of the molten materials by air blast of the explosion. Although the particles were mostly dispersed to the sea because of the wind direction, some of them deposited onto the lower elevation of R/B at Unit 3, could have been subsequently re-suspended and released into the environment, by the steam flow in the R/B caused by restart of the Unit 3 core cooling water injection at 2:30 of March 15.

Journal Articles

A Simulation of radiolysis of chloride solutions containing ferrous ion

Hata, Kuniki; Inoue, Hiroyuki*

Journal of Nuclear Science and Technology, 56(9-10), p.842 - 850, 2019/09

To investigate the effect of dissolved species from steels on the radiolysis processes of Cl$$^{-}$$, radiolysis simulations of solutions containing both Cl$$^{-}$$ and Fe$$^{2+}$$ were carried out. The results showed that the generation of radiolytic products (H$$_{2}$$O$$_{2}$$, O$$_{2}$$ and H$$_{2}$$) increased mainly by the addition of Fe$$^{2+}$$, and a drop in the pH was caused by the hydrolysis of Fe$$^{3+}$$. This pH drop enhanced the reactivity of Cl$$^{-}$$ with $$^{.}$$OH, which induced additional generation of H$$_{2}$$O$$_{2}$$ and O$$_{2}$$. These results show that low concentrations of Cl$$^{-}$$ (1 $$times$$ 10$$^{-3}$$ mol/dm$$^{3}$$ = 35ppm) in the presence of Fe$$^{2+}$$ could influence the generation of H$$_{2}$$O$$_{2}$$ and O$$_{2}$$ during water radiolysis. However, it is considered that these effects of Fe$$^{2+}$$ and low concentration of Cl$$^{-}$$ on water radiolysis are less important for corrosion of steels due to the low concentrations of H$$_{2}$$O$$_{2}$$ and O$$_{2}$$ generated. The other process, such as dissolution of iron enhanced by FeOOH, might predominantly induce corrosion under the conditions of solutions with low concentrations of H$$_{2}$$O$$_{2}$$ and O$$_{2}$$.

Journal Articles

Radiation imaging using a compact Compton camera mounted on a crawler robot inside reactor buildings of Fukushima Daiichi Nuclear Power Station

Sato, Yuki; Terasaka, Yuta; Utsugi, Wataru*; Kikuchi, Hiroyuki*; Kiyooka, Hideo*; Torii, Tatsuo

Journal of Nuclear Science and Technology, 56(9-10), p.801 - 808, 2019/09

Journal Articles

Effect of quenching on molten core-concrete interaction product

Kitagaki, Toru; Ikeuchi, Hirotomo; Yano, Kimihiko; Brissonneau, L.*; Tormos, B.*; Domenger, R.*; Roger, J.*; Washiya, Tadahiro

Journal of Nuclear Science and Technology, 56(9-10), p.902 - 914, 2019/09

Journal Articles

Application of InGaP space solar cells for a radiation dosimetry at high dose rates environment of Fukushima Daiichi Nuclear Power Plant

Okuno, Yasuki; Okubo, Nariaki; Imaizumi, Mitsuru*

Journal of Nuclear Science and Technology, 56(9-10), p.851 - 858, 2019/09

Decommissioning the Fukushima Daiichi Nuclear Power Plant (1F) after the accident caused by a tsunami in 2011 requires characterization of the fuel debris by dose distribution measurement. This paper describes the experimental and theoretical behavior of a radiation detector applied with InGaP solar cells is investigated and allow the localization and characterization of the fuel debris. In the irradiation test, it was observed that the radiation-induced current output of the InGaP solar cells increases linearly with increasing dose rates of $$^{60}$$Co $$gamma$$-ray. For measurements at low dose rates, it becomes clear that the minimum detectable dose rate and resolution can be determined by analyzing the noise characterization. The maximum detection limit of radiation dosimetry for the InGaP solar cell was found to be higher than the highest $$gamma$$-ray dose rate observable at the reactor core for 1F plants. Additionally, as an analysis of the radiation-induced current, it is attempted to express a relational expression between the absorbed dose rate and the creation of radiation-induced current pairs in the solar cells. The experimental and simulation results suggest that solar cells can be powerful tools for radiation dosimetry in high dose rate environments near the debris of the 1F plant.

Journal Articles

Calculation of gamma and neutron emission characteristics emitted from fuel debris of Fukushima Daiichi Nuclear Power Station

Riyana, E. S.; Okumura, Keisuke; Terashima, Kenichi

Journal of Nuclear Science and Technology, 56(9-10), p.922 - 931, 2019/09

Journal Articles

First-principles calculation of mechanical properties of simulated debris Zr$$_x$$U$$_{1-x}$$O$$_2$$

Itakura, Mitsuhiro; Nakamura, Hiroki; Kitagaki, Toru; Hoshino, Takanori; Machida, Masahiko

Journal of Nuclear Science and Technology, 56(9-10), p.915 - 921, 2019/09

To elucidate the mechanical properties of fuel debris inside the Fukushima Daiichi Nuclear Power Plant, we use first-principles calculations to evaluate mechanical properties of cubic Zr$$_{x}$$U$$_{1-x}$$O$$_{2}$$, which is a main component of the fuel debris. We focus on the dependence of mechanical properties on the fraction x of zirconium, compare our results with recent experiment of simulated debris, in which dependences of elastic moduli and fracture toughness on the ZrO$$_{2}$$ content showed deviation from a simple linear relation. We show that elastic moduli drop at around x=0.25 and increase again for larger values of x, as has been observed in experiments. The reason of the drop is a softening owing to disordered atomistic structures induced by the solute zirconium atoms. We also find that stress-strain curves for the x=0.125 case show marked hysteresis owing to the existence of many meta-stable states. We show that this hysteresis leads to slightly increased fracture toughness, but it is not enough to account for the significant increase of fracture toughness observed in experiments.

Journal Articles

Formation of radioactive cesium microparticles originating from the Fukushima Daiichi Nuclear Power Plant accident; Characteristics and perspectives

Onuki, Toshihiko*; Satou, Yukihiko; Utsunomiya, Satoshi*

Journal of Nuclear Science and Technology, 56(9-10), p.790 - 800, 2019/09

Journal Articles

Sensitivity of charged particle activation analysis for long-lived radioactive nuclide determination

Oshima, Masumi*; Yamaguchi, Yurie*; Asai, Masato; Tsukada, Kazuaki; Goto, Jun*; Bamba, Shigeru*; Bi, C.*; Morimoto, Takao*

Journal of Nuclear Science and Technology, 56(9-10), p.866 - 872, 2019/09

Sensitivity of charged particle activation analysis with 8 MeV proton beam was studied for determination of 35 long-lived radioactive nuclides. Reaction cross sections for those nuclides were estimated with ALICE-91 code and isomer yield ratios were estimated from those of neighboring isotopes by taking into account their spins and parities. It was found that the proposed charged particle activation analysis should show high sensitivity for the determination of several hardly measurable nuclides with long half-lives such as $$^{135}$$Cs, $$^{244}$$Pu, $$^{129}$$I, $$^{126}$$Sn, $$^{93}$$Mo, $$^{107}$$Pd, $$^{236}$$U, $$^{248}$$Cm, and $$^{237}$$Np.

Journal Articles

Fracture behavior of recrystallized and stress-relieved Zircaloy-4 cladding under biaxial stress conditions

Mihara, Takeshi; Udagawa, Yutaka; Amaya, Masaki

Journal of Nuclear Science and Technology, 56(8), p.724 - 730, 2019/08

Journal Articles

Development of regional downscaling capability in STEAMER ocean prediction system based on multi-nested ROMS model

Kamidaira, Yuki; Kawamura, Hideyuki; Kobayashi, Takuya; Uchiyama, Yusuke*

Journal of Nuclear Science and Technology, 56(8), p.752 - 763, 2019/08

Oceanic regional downscaling capability was implemented into Short-Term Emergency Assessment system of Marine Environmental Radioactivity (STEAMER) developed by Japan Atomic Energy Agency to enable us to predict more realistically the oceanic dispersion of radionuclides at higher spatiotemporal resolutions for broader applications. The system consisted of a double-nested oceanic downscaling circulation model with tidal forcing and an oceanic radionuclide dispersion model. This system was used to comparatively examine downscaling and tidal effects on the dispersion of radionuclides hypothetically released from the Fukushima Daiichi Nuclear Power Plant in the colder season. The simulated dissolved $$^{137}$$Cs distribution was different from that obtained using coarser-resolution models because downscaling enhanced both horizontal and vertical mixing. The suppression of horizontal mixing and the promotion of vertical mixing by tidal forcing synergistically reduced offshore $$^{137}$$Cs transport. In addition, the submesoscale effects strengthened the three-dimensional $$^{137}$$Cs fluctuations by $$<$$10 times, while the tidal effects promoted slightly increased the intensity of three-dimensional $$^{137}$$Cs fluctuations by approximately 3%. This indicated that the submesoscale effects substantially surpassed tidal forcing in oceanic mixing in the coastal margin off Fukushima in the colder season.

Journal Articles

Simulation study on the design of nondestructive measurement system using fast neutron direct interrogation method to nuclear materials in fuel debris

Maeda, Makoto; Furutaka, Kazuyoshi; Kureta, Masatoshi; Ozu, Akira; Komeda, Masao; Toh, Yosuke

Journal of Nuclear Science and Technology, 56(7), p.617 - 628, 2019/07

Journal Articles

Oxidation behavior of high-burnup advanced fuel cladding tubes in high-temperature steam

Narukawa, Takafumi; Amaya, Masaki

Journal of Nuclear Science and Technology, 56(7), p.650 - 660, 2019/07

Journal Articles

Study on B$$_{4}$$C decoupler with burn-up reduction aiming at 1-MW pulsed neutron source

Oi, Motoki; Teshigawara, Makoto; Harada, Masahide; Ikeda, Yujiro

Journal of Nuclear Science and Technology, 56(7), p.573 - 579, 2019/07

In pulsed neutron sources, a neutron absorber called decoupler is attached to the moderator to sharpen the neutron pulses for achieving good neutron energy resolutions. Cadmium and boron carbide (B$$_{4}$$C) are widely used as the decoupler materials. However, it is difficult to use B$$_{4}$$C in MW-class spallation neutron sources owing to high burn-up, which decreases cut-off energy and increase of helium gas swelling. To solve these issues, we introduce the concept of pre-decoupler to reduce neutron absorption in the B$$_{4}$$C decoupler, which is sandwiched by appropriate neutron absorption materials. Then, we study impacts of the pre-decouplers on B$$_{4}$$C decoupler in terms of burn-up by performing simplified model calculations. It is shown that neutron absorption in B$$_{4}$$C is reduced by 60% by using a Cd pre-decoupler without neutron intensity penalty. Moreover, helium gas swelling in B$$_{4}$$C is restrained to be one-third of the value when not using the pre-decoupler.

Journal Articles

Measurements of the $$^{243}$$Am neutron capture and total cross sections with ANNRI at J-PARC

Kimura, Atsushi; Nakamura, Shoji; Terada, Kazushi*; Nakao, Taro*; Mizuyama, Kazuhito*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Harada, Hideo; Katabuchi, Tatsuya*; Igashira, Masayuki*; et al.

Journal of Nuclear Science and Technology, 56(6), p.479 - 492, 2019/06

Journal Articles

Visualizing an ignition process of hydrogen jets containing sodium mist by high-speed imaging

Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya*; Uno, Masayoshi*

Journal of Nuclear Science and Technology, 56(6), p.521 - 532, 2019/06

Journal Articles

Measurements of thermal-neutron capture cross-section and resonance integral of neptunium-237

Nakamura, Shoji; Kitatani, Fumito; Kimura, Atsushi; Uehara, Akihiro*; Fujii, Toshiyuki*

Journal of Nuclear Science and Technology, 56(6), p.493 - 502, 2019/06

The thermal-neutron capture cross-section($$sigma_{0}$$)and resonance integral(I$$_{0}$$) were measured for the $$^{237}$$Np(n,$$gamma$$)$$^{238}$$Np reaction by an activation method. A method with a Gadolinium filter, which is similar to the Cadmium difference method, was used to measure the $$sigma_{0}$$ with paying attention to the first resonance at 0.489 eV of $$^{237}$$Np, and a value of 0.133 eV was taken as a cut-off energy. Neptunium-237 samples were irradiated at the pneumatic tube of the Kyoto University Research Reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Wires of Co/Al and Au/Al alloys were used as monitors to determine thermal-neutron fluxes and epi-thermal Westcott's indices at an irradiation position. A $$gamma$$-ray spectroscopy was used to measure activities of $$^{237}$$Np, $$^{238}$$Np and neutron monitors. On the basis of Westcott's convention, the $$sigma_{0}$$ and I$$_{0}$$ values were derived as 186.9$$pm$$6.2 barn, and 1009$$pm$$90 barn, respectively.

Journal Articles

Model updates and performance evaluations on fuel performance code FEMAXI-8 for light water reactor fuel analysis

Udagawa, Yutaka; Amaya, Masaki

Journal of Nuclear Science and Technology, 56(6), p.461 - 470, 2019/06

no abstracts in English

Journal Articles

Melting behavior and thermal conductivity of solid sodium-concrete reaction product

Kawaguchi, Munemichi; Miyahara, Shinya; Uno, Masayoshi*

Journal of Nuclear Science and Technology, 56(6), p.513 - 520, 2019/06

This study revealed melting points and thermal conductivities of four samples generated by sodium-concrete reaction (SCR). We prepared the samples using two methods such as firing mixtures of sodium and grinded concrete powder, and sampling depositions after the SCR experiments. In the former, the mixing ratios were determined from the past experiment. The latter simulated the more realistic conditions such as the temperature history and the distribution of Na and concrete. The thermogravimetry-differential thermal analyzer (TG-DTA) measurement showed the melting points were 865-942$$^{circ}$$C, but those of the samples containing metallic Na couldn't be clarified. In the two more realistic samples, the compression moldings in a furnace were observed. The observation revealed the softening temperature was 800-840$$^{circ}$$C and the melting point was 840-850$$^{circ}$$C, which was 10-20$$^{circ}$$C lower than the TG-DTA results. The thermodynamics calculation of FactSage 7.2 revealed the temperature of the onset of melting was caused by melting of the some components such as Na$$_{2}$$SiO$$_{3}$$ and/or Na$$_{4}$$SiO$$_{4}$$. Moreover, the thermal conductivity was $$lambda$$=1-3W/m-K, which was comparable to xNa$$_{2}$$O-1-xSiO$$_{2}$$ (x=0.5, 0.33, 0.25), and those at 700$$^{circ}$$C were explained by the equation of $$NBO/T$$.

2327 (Records 1-20 displayed on this page)