Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 317

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron transmission imaging system with a superconducting kinetic inductance detector

Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.

Journal of Physics; Conference Series, 2776, p.012009_1 - 012009_9, 2024/06

Journal Articles

Innovative cesiation deriving incredible 145 mA beam from J-PARC cesiated RF-driven H$$^{-}$$ ion source

Ueno, Akira

Journal of Physics; Conference Series, 2743(1), p.012001_1 - 012001_8, 2024/05

On 2020, the 8 hours operation of the J-PARC cesiated RF-driven H$$^{-}$$ ion source (IS) with a 69.9 keV 120 mA beam was reported. Many times and large amount of Cs and H$$_2$$O injections were required. The very high plasma etectrode temperature (T$$_{rm PE}$$) of 245$$^{circ}$$C suggests a novel cesiation surviving against high T$$_{rm PE}$$ and plasma bombardments. A procedure based upon a hypothesis of the H$$_2$$O (chemically bound with Mo) mediated cesiation was examined. The innovative cesiation derived a 76.5 keV 145 mA beam stably with the small beam fluctuation and transverse emittances suitable for RFQs of high energy LINACs. Furthermore, the beam intensity for the J-PARC IS operation energy of 52.5 keV was increased from 72 mA to 83 mA which should contribute for the stable J-PARC LINAC 60 mA operation in near future.

Journal Articles

Simple 3D PIC analysis for beam phase space oscillation in RF driven negative hydrogen ion source

Shibata, Takanori*; Shinto, Katsuhiro; Nakano, Haruhisa*; Hoshino, Kazuo*; Miyamoto, Kenji*; Okoshi, Kiyonori; Nammo, Kesao*; Ikegami, Kiyoshi*; Kawai, Isao*; Oguri, Hidetomo; et al.

Journal of Physics; Conference Series, 2743, p.012007_1 - 012007_5, 2024/05

Oscillation of the negative hydrogen ion (H$$^-$$) beam phase space in Radio Frequency (RF) ion source is investigated by a simple 3D Particle-In-Cell (PIC) model which takes into account the transport processes of electron, proton and H$$^-$$ in the extraction region. The calculation domain is in vicinity of the single beam aperture in J-PARC ion source configuration. In order to understand relation between the plasma density oscillation and the extracted H$$^-$$ beam characteristics, the input electron and proton fluxes from the driver region are varied parametrically with the 1st and the 2nd harmonics of the J-PARC RF frequency (2 or 4 MHz). The numerical results give an idea to the main physical processes between the oscillations of the plasma parameters and the extracted H$$^-$$ ion trajectories in the different RF phases. Countermeasures to reduce the oscillation mechanisms are also discussed in the presentation.

Journal Articles

Development of a new J-PARC-made internal antenna for the J-PARC RF-driven H$$^-$$ ion source

Shinto, Katsuhiro; Shibata, Takanori*; Okoshi, Kiyonori; Nammo, Kesao*; Kawai, Isao*; Ikegami, Kiyoshi*

Journal of Physics; Conference Series, 2743, p.012023_1 - 012023_5, 2024/05

We have been conducting the test of a new J-PARC-made internal antenna for the J-PARC RF-driven cesiated H$$^-$$ ion source. After the development of the first J-PARC-made antenna, the composition of the porcelain enamel coating of the antenna was changed because we were afraid of the outgassing of the impurities from the previous antenna coating. During the test of high-density plasma production by the new antenna, we monitored the outgassing characteristics of the new antenna by measuring mass spectrometry and optical spectrum analysis. It is confirmed that no remarkable impurities were emitted from the new antenna. We also carried out the H$$^-$$ beam extraction and measured the H$$^-$$ beam characteristics by using the new antenna. It is found that the emittances of the H$$^-$$ beam extracted from the J-PARC RF-driven cesiated H$$^-$$ ion source by using the new antenna were similar to those in the case by using the SNS-made antenna. To accelerate the endurance test of the new antenna, we applied the antenna for the high-density plasma production to the 5% duty factor (1 ms pulse width with 50 Hz repetition rate) with the 2 MHz RF input power of approximately 60 kW, whose values were much higher than those in the J-PARC nominal operation; 0.8 ms pulse width with 25 Hz repetition rate (the duty factor of 2%) with the RF input power of approximately 30 kW. This presentation shows the results of the characteristics of the new J-PARC-made antenna and discusses the feasibility of the new antenna for use in the J-PARC accelerator operation.

Journal Articles

Factors influencing the fluctuation amplitude of the H$$^-$$ ion beam extracted from an RF wave excited ion source plasma

Wada, Motoi*; Shibata, Takanori*; Shinto, Katsuhiro

Journal of Physics; Conference Series, 2743, p.012031_1 - 012031_5, 2024/05

An internal antenna type RF driven negative hydrogen (H$$^-$$) ion source supplies beams to the J-PARC accelerator facility. The H$$^-$$ ion beam current exhibits high stability, while it fluctuates with less than 5% amplitude of the DC current when a Faraday cup measures the current extracted from the source mounted on a test stand. Two frequencies are identified as the main oscillation components, 2 MHz and 4 MHz which are the driving RF frequency and the second harmonics, respectively. The amplitude levels of these components appear larger as parts of the beam directing specific angles passing through a slit are detected. A possible reason for observing a small amplitude oscillation in the total beam intensity is the averaged phase-shift of the local beam depending upon the position of the H$$^-$$ ion production and the succeeding trajectory reaching the Faraday cup. To confirm if the phase-shift is the main reason for diminishing the oscillation amplitude for the total beam, the phase-shift between the 2 MHz and 4 MHz components were measured for beams passing through a 0.1 mm slit coupled to a Faraday cup having a 0.1 mm entrance slit. The result indicated the phase-shift changed substantially depending upon the position, but no simple model can explain the measured spatial distribution of the phase-shift. Further attempts will be made to clarify the beam dynamics relevant to the H$$^-$$ ion beam transport including the measurements of the beam current phase-shift with respect to the RF antenna current, and the time evolution of Balmer-$$alpha$$ light emission.

Journal Articles

Observation of beam emittance reduction due to gas sheet injection for beam profile measurement

Yamada, Ippei; Chimura, Motoki; Kamiya, Junichiro; Kinsho, Michikazu

Journal of Physics; Conference Series, 2687(7), p.072018_1 - 072018_6, 2024/01

no abstracts in English

Journal Articles

Beam profile measurement using the highly-oriented pyrolytic graphite

Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*

Journal of Physics; Conference Series, 2687(7), p.072006_1 - 072006_6, 2024/01

The mitigation of heat loading is one of the important issues for beam instrumentation to measure the high-power proton beam. Recently, the highly-oriented pyrolytic graphite (HOPG) material was used for the target probe of the bunch-shape monitor at the front-end in the Japan Proton Accelerator Research Complex (J-PARC). Since the thermal conductivity of the HOPG is high, it is suitable to measure the beam profile under the condition of high heat loading. As an application of the HOPG, for example, the thin HOPG may be used as a substitutive material of the target wire for the transverse profile monitor such as the wire scanner monitor. The possibility of the HOPG target for the beam profile monitor is discussed from some results of the test experiment using the 3-MeV negative hydrogen ion beam at the test stand.

Journal Articles

Fabrication progress of the prototype spoke cavity for the JAEA-ADS linac

Tamura, Jun; Kondo, Yasuhiro; Yee-Rendon, B.; Meigo, Shinichiro; Maekawa, Fujio; Kako, Eiji*; Umemori, Kensei*; Sakai, Hiroshi*; Domae, Takeshi*

Journal of Physics; Conference Series, 2687(5), p.052008_1 - 052008_6, 2024/01

Journal Articles

Improvement of the longitudinal phase space tomography at the J-PARC synchrotrons

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Saha, P. K.; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; et al.

Journal of Physics; Conference Series, 2687(7), p.072005_1 - 072005_7, 2024/01

Longitudinal phase space tomography is an effective measurement tool for acquiring the longitudinal phase space distribution. For the J-PARC synchrotrons, tomography, which can take into account the beam dynamics such as longitudinal space charge effect and nonlinearity, is desired, as the beam power increases. In this study, for the J-PARC synchrotron, the CERN's tomography, which employs the hybrid algorithm that can consider the beam dynamics for reconstruction, is introduced and benchmarked. The benchmark results show that the CERN's tomography has the ability to measure the longitudinal phase space distribution accurately, in the high-power beam operation at the J-PARC synchrotrons.

Journal Articles

Update of Bragg edge analysis software "GUI-RITS"

Oikawa, Kenichi; Sato, Hirotaka*; Watanabe, Kenichi*; Su, Y. H.; Shinohara, Takenao; Kai, Tetsuya; Kiyanagi, Yoshiaki*; Hasemi, Hiroyuki

Journal of Physics; Conference Series, 2605, p.012013_1 - 012013_6, 2023/10

Journal Articles

Development of tracer particles for thermal hydraulic experiment by neutron imaging

Saito, Yasushi*; Ito, Daisuke*; Odaira, Naoya*; Kurita, Keisuke; Iikura, Hiroshi

Journal of Physics; Conference Series, 2605, p.012028_1 - 012028_6, 2023/10

To observe flow velocity distributions by Neutron Imaging, suitable tracer is necessary. The requirements are its density, its visibility, and its wettability (if applied to liquid metal). Gold cadmium tracers have been developed for the Pb-Bi two-phase flow, however, the visibility have not been verified depending on the particle size and the measurement system. As the candidates of tracer particles, Ag, Cd, Au-Cd, and Ag-Cd have been tested by varying its compositions and its diameters. Results show enough visibility if the particles size is larger than 1mm. In addition, Cd tracer particles were applied to the fluidized bed, where the bed materials are metallic particle made of stainless steel, with 1mm diameter. The diameter of Cd trace is about 1.5 mm. From the neutron imaging, the visibility of the tracers is enough to measure the velocity distributions in the fluidized bed.

Journal Articles

Measurements of gas-liquid two-phase flow dynamics using high-speed neutron imaging

Ito, Daisuke*; Odaira, Naoya*; Ito, Kei*; Saito, Yasushi*; Kurita, Keisuke; Iikura, Hiroshi

Journal of Physics; Conference Series, 2605, p.012024_1 - 012024_6, 2023/10

Gas-liquid two-phase flow appears in many heat-exchanging devices. To understand the phenomena in such devices, the two-phase flow dynamics should be clarified. In this study, high-speed neutron imaging is applied to the measurements of two-phase flow dynamics, and the accuracy of the void fraction measurement is investigated.

Journal Articles

Development of an areal density imaging for boron and other elements

Tsuchikawa, Yusuke; Kai, Tetsuya; Abe, Yuta; Oikawa, Kenichi; Parker, J. D.*; Shinohara, Takenao; Sato, Ikken

Journal of Physics; Conference Series, 2605, p.012022_1 - 012022_6, 2023/10

We developed a method to obtain the areal density distribution of boron, which has a large neutron cross section, by means of an energy resolved neutron imaging. Commonly in a measurement of elements with very high neutron sensitivity, the quantitative measurement becomes more difficult with the amount of element due to the neutron self-shielding effect. To avoid this effect, an energy-resolved method using known cross section data was attempted, and a quantitative imaging of such elements was demonstrated at the MLF of J-PARC. This presentation introduces a measurement of melted simulated-fuel assemblies obtained in the research of the Fukushima Daiichi Nuclear Power Plant after the severe accident. Energy-dependent neutron transmission rates of the samples were measured by a neutron imaging detector, and were analyzed to obtained the areal density of boron at each position.

Journal Articles

Introduction to Neutron Radiography Facilities at the Japan Research Reactor-3

Kurita, Keisuke; Iikura, Hiroshi; Tsuchikawa, Yusuke; Kai, Tetsuya; Shinohara, Takenao; Odaira, Naoya*; Ito, Daisuke*; Saito, Yasushi*; Matsubayashi, Masahito

Journal of Physics; Conference Series, 2605, p.012005_1 - 012005_6, 2023/10

The Japan Research Ractor-3 (JRR-3) is operation resumed on February 26, 2021, and the shared use was also restarted in July, 2021. With the resumption of JRR-3 operation, two imaging facilities called TNRF and CNRF have also resumed their utilization. In this presentation, we report the details of these two neutron facilities.

Journal Articles

Sodium diffusion in hard carbon studied by small- and wide-angle neutron scattering and muon spin relaxation

Oishi, Kazuki*; Igarashi, Daisuke*; Tatara, Ryoichi*; Kawamura, Yukihiko*; Hiroi, Kosuke; Suzuki, Junichi*; Umegaki, Izumi*; Nishimura, Shoichiro*; Koda, Akihiro*; Komaba, Shinichi*; et al.

Journal of Physics; Conference Series, 2462, p.012048_1 - 012048_5, 2023/03

 Times Cited Count:0 Percentile:0.21(Physics, Applied)

Journal Articles

Non-destructive elemental analysis of lunar materials with negative muon beam at J-PARC

Chiu, I.-H.; Terada, Kentaro*; Osawa, Takahito; Park, C.*; Takeshita, Soshi*; Miyake, Yasuhiro*; Ninomiya, Kazuhiko*

Journal of Physics; Conference Series, 2462, p.012004_1 - 012004_6, 2023/03

 Times Cited Count:0 Percentile:0.21(Physics, Applied)

In the last decade, non-destructive elemental analysis using negative muon beams advanced significantly. This method can be used to determine the elemental composition of bulk materials without causing damage. In this study, we performed a negative muon irradiation experiment for a Northwest Africa 482 lunar meteorite (NWA482), which was installed in a stainless steel analysis chamber. The analysis chamber was filled with helium gas to suppress the background signals caused by air-scattering muons. The muonic X-rays from Al, Fe, Ca, Mg, Si, and O in the samples were detected using six high-purity germanium semiconductor detectors arranged around the analysis chamber. To correct the X-ray self-absorption effect of the samples, a Monte-Carlo simulation using Geant4 toolkit was used. Based on the quantitative analysis for muonic X-ray measurement with the correction application from the simulation, we successfully investigated the analytical sensitivity of each element in meteorites based on the NWA482 data.

Journal Articles

Magnetic ground state of YbCo$$_2$$Zn$$_{20}$$ probed by muon spin relaxation

Higemoto, Wataru; Sato, Kazuhiko*; Ito, Takashi; Oishi, Kazuki*; Saiga, Yuta*; Kosaka, Masashi*; Matsubayashi, Kazuyuki*; Uwatoko, Yoshiya*

Journal of Physics; Conference Series, 2462, p.012039_1 - 012039_5, 2023/03

 Times Cited Count:0 Percentile:0.21(Physics, Applied)

The cubic compound YbCo$$_2$$Zn$$_{20}$$ has huge electronic specific heat coefficient and its ground state could be located in the vicinity of the quantum critical point. Indeed, a magnetic long-range order was observed under pressure above 1-2 GPa. To investigate magnetic ground state, we have carried out muon spin relaxation measurements and confirm non-magnetic ground state with fluctuating tiny magnetic moment.

Journal Articles

Present status of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.

Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03

 Times Cited Count:0 Percentile:0.21(Physics, Applied)

Journal Articles

Design studies on a high-power wide-band RF combiner for consolidation of the driver amplifier of the J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Journal of Physics; Conference Series, 2420, p.012092_1 - 012092_6, 2023/01

A power upgrade of existing 8 kW solid-state driver amplifier is required for the acceleration of high intensity proton beams on the J-PARC 3 GeV rapid cycling synchrotron. The development of a 25 kW amplifier with gallium nitride (GaN) HEMTs, based on 6.4 kW modules is on going. The combiner is a key component to achieve such a high output power over the wide bandwidth required for multi-harmonic rf operation. This paper presents preliminary design of the combiner. The circuit simulation setup and results, including the realistic magnetic core characteristics and frequency response of the cable are reported.

Journal Articles

Recent results of beam loss mitigation and extremely low beam loss operation of J-PARC RCS

Saha, P. K.; Okabe, Kota; Nakanoya, Takamitsu; Shobuda, Yoshihiro; Harada, Hiroyuki; Tamura, Fumihiko; Okita, Hidefumi; Yoshimoto, Masahiro; Hotchi, Hideaki*

Journal of Physics; Conference Series, 2420, p.012040_1 - 012040_7, 2023/01

317 (Records 1-20 displayed on this page)