Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kadowaki, Satoshi; Thwe Thwe, A.; Furuyama, Taisei*; Kawata, Kazumasa*; Katsumi, Toshiyuki; Kobayashi, Hideaki*
Journal of Thermal Science and Technology (Internet), 16(2), p.20-00491_1 - 20-00491_12, 2021/00
Times Cited Count:9 Percentile:41.94(Thermodynamics)Effects of pressure and heat loss on the unstable motion of cellular-flame fronts in hydrogen-air lean premixed flames were numerically investigated. The reaction mechanism for hydrogen-oxygen combustion was modeled with seventeen reversible reactions of eight reactive species and a diluent. Two-dimensional unsteady reactive flow was treated, and the compressibility, viscosity, heat conduction, molecular diffusion and heat loss were taken into account. As the pressure became higher, the maximum growth rate increased and the unstable range widened. These were due mainly to the decrease of flame thickness. The burning velocity of a cellular flame normalized by that of a planar flame increased as the pressure became higher and the heat loss became larger. This indicated that the pressure and heat loss affected strongly the unstable motion of cellular-flame fronts. In addition, the fractal dimension became larger, which denoted that the flame shape became more complicated.
Katsumi, Toshiyuki; Yoshida, Yasuhito*; Nakagawa, Ryo*; Yazawa, Shinya*; Kumada, Masashi*; Sato, Daisuke*; Thwe Thwe, A.; Chaumeix, N.*; Kadowaki, Satoshi
Journal of Thermal Science and Technology (Internet), 16(2), p.21-00044_1 - 21-00044_13, 2021/00
Times Cited Count:8 Percentile:41.94(Thermodynamics)The effects of addition of CO and water vapor on characteristics of dynamic behavior of hydrogen/air premixed flames were elucidated experimentally. By Schlieren photography, wrinkles on the flame surface were clearly observed in low equivalence ratios. The propagation velocity increased monotonically as the flame radius became larger and flame acceleration was found. Increasing the addition of inert gas, the propagation velocity decreased, especially in the case of CO addition. Moreover, the Markstein length and the wrinkling factor decreased. This indicated that the addition of Co or HO promoted the unstable motion of hydrogen flames, which could be due to the enhancement of the diffusive-thermal effect. Based on the characteristics of dynamic behavior of hydrogen flames, the parameters used in the mathematical model on propagation velocity including flame acceleration was obtained, and then the flame propagation velocity under various conditions was predicted.
Thwe Thwe, A.; Kadowaki, Satoshi; Hino, Ryutaro
Journal of Thermal Science and Technology (Internet), 13(2), p.18-00457_1 - 18-00457_12, 2018/12
Times Cited Count:0 Percentile:0.00(Thermodynamics)Two dimensional unsteady calculations of reactive flows were performed in large domain to investigate the unstable behaviors of cellular premixed flames at low Lewis numbers based on the diffusive-thermal (D-T) model and compressible Navier-Stokes (N-S) equations. The growth rates obtained by the compressible N-S equations were large and the unstable ranges were wide compared with those obtained by the D-T model equations. When the length of computational domain increased, the number of small cells separated from large cells of the cellular flame increased drastically. The stronger unstable behaviors and the larger average burning velocities were observed especially in the numerical results based on the compressible N-S equations. In addition, the fractal dimension obtained by the compressible N-S equations was larger than that by the D-T model equations. Moreover, we confirmed that the radiative heat loss promoted the instability of premixed flames at low Lewis numbers.