Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kawamura, Takuma; Hasegawa, Yuta; Idomura, Yasuhiro
Journal of Visualization, 27(1), p.89 - 107, 2024/02
Times Cited Count:2 Percentile:33.40(Computer Science, Interdisciplinary Applications)Interactive in-situ steering is an effective tool for debugging, searching for optimal solutions, and analyzing inverse problems in fast and large-scale computational fluid dynamics (CFD) simulations. We propose an interactive in-situ steering framework for large-scale CFD simulations on GPU supercomputers. This framework employs in-situ particle-based volume rendering (PBVR), in-situ data sampling, and a file-based control that enables interactive communication of steering parameters, compressed particle data, and sampled monitoring data between supercomputers and user PCs. The parallelized PBVR is processed on the host CPU to avoid interference with CFD simulations on the GPU. We apply the proposed framework to a real-time plume dispersion analysis code CityLBM on GPU supercomputers. In the numerical experiment, we address an inverse problem to find a pollutant source from the monitoring data, and demonstrate the effectiveness of the human-in-the-loop approach.
Katsumi, Toshiyuki; Thwe Thwe, A.; Kadowaki, Satoshi
Journal of Visualization, 25(5), p.1075 - 1083, 2022/10
Times Cited Count:2 Percentile:20.34(Computer Science, Interdisciplinary Applications)Lean combustion and inert-gas addition are useful to control the burning velocity of hydrogen premixed flames, and it is well known that the cellular structure forms on the front of lean hydrogen flames owing to intrinsic instability. However, the influences of inert-gas addition on the instability phenomena of lean hydrogen premixed flames are not understood fully, and then it is needed to be investigated the flame instability experimentally. In the experiments, the cellular structure and fluctuation of H/O
/inert gases (Ar, N
,CO
) premixed flames on a flat burner were obtained using direct observation, laser diagnostics and light emission intensity to elucidate the characteristics of instability phenomena. As the results, the correlation of inert-gas addition, equivalence ratio and total flow rate with the characteristics of cellular flames was revealed, and the influences of these parameters on flame instability were discussed.
Kawamura, Takuma; Idomura, Yasuhiro
Journal of Visualization, 23(4), p.695 - 706, 2020/08
Times Cited Count:2 Percentile:11.86(Computer Science, Interdisciplinary Applications)An in-situ visualization system based on the particle-based volume rendering offers a highly scalable and flexible visual analytics environment based on multivariate volume rendering. Although it showed excellent computational performance on the conventional CPU platforms, accelerated computation on the latest many core platforms revealed performance bottlenecks related to a function parser and particles I/O. In this paper, we develop a new SIMD-aware function parser and an asynchronous data I/O method based on task-based thread parallelization. Numerical experiments on the Oakforest-PACS, which consists of 8208 Intel Xeon Phi7250 (Knights Landing) processors, demonstrate an order of magnitude speedup with keeping improved strong scaling up to 100 k cores.
Ito, Daisuke*; Sato, Hirotaka*; Saito, Yasushi*; Parker, J. D.*; Shinohara, Takenao; Kai, Tetsuya
Journal of Visualization, 22(5), p.889 - 895, 2019/06
Times Cited Count:3 Percentile:16.88(Computer Science, Interdisciplinary Applications)Kawamura, Takuma; Idomura, Yasuhiro; Miyamura, Hiroko; Takemiya, Hiroshi
Journal of Visualization, 20(1), p.151 - 162, 2017/02
Times Cited Count:4 Percentile:21.74(Computer Science, Interdisciplinary Applications)In this paper, we propose a novel transfer function design interface for multivariate volume rendering. In the conventional multivariate volume rendering, GUI based transfer function design interfaces were limited to two-dimensional variables space. In order to design higher dimensional transfer functions in an interactive and intuitive manner, a Transfer Function Synthesizer (TFS) is developed. On the TFS, multi-dimensional transfer functions are generated by algebraic synthesis of one-dimensional transfer functions, which are designed based on the conventional GUIs or algebraic expressions. The TFS enables not only multivariate volume rendering but also general visualization techniques such as surface visualization and image composition within the framework of volume rendering. The TFS is implemented on the remote visualization system PBVR, and applied to various multivariate scalar volume data generated from nuclear applications.
Inagaki, Terumi*; Hatori, Masakazu*; Suzuki, Tomohiro*; Shiina, Yasuaki
Journal of Visualization, 9(2), p.145 - 160, 2006/00
Times Cited Count:10 Percentile:45.91(Computer Science, Interdisciplinary Applications)no abstracts in English