Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nishikata, Kaori; Ishida, Takuya; Yonekawa, Minoru; Kato, Yoshiaki; Kurosawa, Makoto; Kimura, Akihiro; Matsui, Yoshinori; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.
KURRI Progress Report 2014, P. 109, 2015/07
As one of effective applications of the Japan Materials Testing Reactor (JMTR), JAEA has a plan to produce Mo by (n,
) method ((n,
)
Mo production), a parent nuclide of
Tc. In this study, preliminary irradiation test was carried out with the high-density molybdenum trioxide (MoO
) pellets in the hydraulic conveyer (HYD) of the Kyoto University Research Reactor (KUR) and the
Tc solution extracted from
Mo was evaluated. After the irradiation test of the high-density MoO
pellets in the KUR,
Tc was extracted from the Mo solution and the recovery rate of
Tc achieved the target values. The
Tc solution also got the value that satisfied the standard value for
Tc radiopharmaceutical products by the solvent extraction method.
Takeuchi, Tomoaki; Yamamoto, Keiichi; Otsuka, Noriaki; Shibata, Hiroshi; Shibata, Akira; Takemoto, Noriyuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Unesaki, Hironobu*; Fujihara, Yasuyuki*; et al.
KURRI Progress Report 2014, P. 108, 2015/07
Investigation of a relation between output power and brightness of Cherenkov light of a specific fuel element at KUR by a CCD camera was performed due to a development of a real-time in-core measurement technique using Cherenkov light. The results indicate that the inhomogeneous distribution of output power and the shadow of the control-rod guide tubes and the other irradiation equipment have significant effects on the brightness of the Cherenkov light. These effects could be suppressed by using a number of cameras located at various positions.