Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kim, M.; Yoshimura, Kazuya; Sakuma, Kazuyuki; Malins, A.*; Abe, Tomohisa; Nakama, Shigeo; Machida, Masahiko; Saito, Kimiaki
Kankyo Hoshano Josen Gakkai-Shi, 12(2), p.39 - 53, 2024/04
More than ten years have passed since the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. But with the progress of decontamination, the evacuation order has been lifted and the return of residents is still ongoing. Under these circumstances, in order to quantitatively evaluate the effect of decontamination activities and cultivation on air dose rate reduction, a detailed environmental model was constructed using 3D-ADRES for a real area located in the Okuma town, Fukushima prefecture. Monte Carlo simulations were performed using the model to calculate realistic distributions of radioactive Cs based on measurement results and air dose rates reflecting changes over time. As a result, the distribution of air dose rates at 100 cm above ground level in the target area according to decontamination and cultivation activities was calculated. The calculated air dose rates reproduced the measured values well, and were confirmed to be appropriate as a method for evaluating the effects of decontamination and cultivation activities. This method is expected to serve as a reference for further decontamination management measures to reduce the air dose rate in the difficult-to-return zone, where entry is still restricted.
Kusakabe, Kazuaki*; Watanabe, Masanori; Nishiuchi, Masashi*; Yamasaki, Takuhei*; Inoue, Hiromi*
Kankyo Hoshano Josen Gakkai-Shi, 11(1), p.15 - 23, 2023/03
The spread of radioactive materials caused by the Fukushima Daiichi Nuclear Power Plant accident that occurred in March 2011 contaminated a wide area that includes Fukushima Prefecture. Although air dose rates in Fukushima Prefecture have been steadily decreasing because of decontamination and the physical decay of radioactive materials, it is important to confirm the sustainability of decontamination effects in living areas and to predict future trends in air dose rates to reassure residents who are concerned regarding radiation exposure. This report aims to confirm the sustainability of the decontamination effects in public facilities after decontamination on a continuous and detailed basis, and to verify whether the future transition in air dose rates can be predicted using existing model. The air dose rates in public facilities after decontamination were measured via fixed-point and walking surveys, and the changes in air dose rates were clarified quantitatively for each facility. The measured values were compared with values obtained using existing model, and prediction accuracy was considered. The results showed that there was no evident recontamination after decontamination at any of the surveyed facilities, indicating that the decontamination effects were sustained. It was also confirmed that future trends in air dose rates at the facilities after decontamination could be accurately predicted by existing model. Key words: air dose rate, decontamination, future prediction, public facilities.
Kawase, Keiichi
Kankyo Hoshano Josen Gakkai-Shi, 9(4), p.171 - 172, 2021/12
no abstracts in English
Sakuma, Kazuyuki; Niizato, Tadafumi; Kim, M.; Malins, A.; Machida, Masahiko; Yoshimura, Kazuya; Kurikami, Hiroshi; Kitamura, Akihiro; Hosomi, Masaaki*
Kankyo Hoshano Josen Gakkai-Shi, 6(3), p.145 - 152, 2018/09
We simulated air dose rates using PHITS to consider how the partitioning of radiocesium between the forest canopy, litter layer and soil layer affected air dose rates by perturbing the radiocesium source distribution between different simulations. Transferring radiocesium from the canopy to the litter layer did not affect air dose rates at 1 m above the ground when setting up the simulation with a radiocesium distribution measured in October 2015. This is because there was almost no radiocesium in the canopy at that time. However air dose rates tended to be high near the canopy, and above the canopy up to 200 m altitude, when the simulations were initiated using source distribution data applicable for August-September 2011, due to the larger amount of radiocesium in the canopy at that time. Transferring the radiocesium from the canopy to the litter layer in this case was associated with a three times increase in the air dose rate at 1 m, as the average distance between radiocesium in the forest and 1 m above the ground was shortened. In both cases radiocesium transfer from the litter layer to the underlying soil was associated with a one third to 50% reduction in air dose rates at 1 m, due to the self-shielding effect of soil.
Saegusa, Jun; Yoda, Tomoyuki; Murakami, Mitsuhiro; Takeishi, Minoru
Kankyo Hoshano Josen Gakkai-Shi, 5(2), p.79 - 93, 2017/06
After the Fukushima Daiichi Nuclear Power Plant (NPP) accident in March 2011, environmental radiation monitoring works have been continuously conducted throughout the Fukushima prefecture of Japan. Five-year transitions of ambient dose rates at 15 locations 20-60 km away from the NPPs were precisely analyzed to investigate their chronological change. Measured dose rates were successfully fitted into a function consisting of a factor reflecting the physical decay of radiocesium and the other component such as the weathering effect. The ecological half-lives derived from the function ranged from 3 to 27 years (average 10 years). The radiation shielding effect by snow covering was also studied with the obtained functions. Due to the effect, dose rates were lowered by 15-50% by 20-cm-deep snow covering, and the ambient doses integrated over the five years were found to decrease by up to 7% compared to those without the snow covering that can be predicted from the fit function.
Kitamura, Akihiro; Imaizumi, Yoshitaka*; Yamaguchi, Masaaki; Yui, Mikazu; Suzuki, Noriyuki*; Hayashi, Seiji*
Kankyo Hoshano Josen Gakkai-Shi, 2(3), p.185 - 192, 2014/09
Annual discharge rates of radioactive cesium through selected rivers due to the Fukushima Dai-ichi Nuclear Power Plant accident were simulated by two different watershed models. One is the Soil and Cesium Transport, SACT, model which was developed by Japan Atomic Energy Agency and the other one is the Grid-Catchment Integrated Modeling System, G-CIEMS, which was developed by National Institute of Environmental Studies. We choose the Abukuma, the Ukedo, and the Niida rivers for the present study. Comparative results showed that while components and assumptions adopted in two models differ, both methods predicted the same order of magnitude estimates.