Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Watanabe, So; Takahatake, Yoko; Ogi, Hiromichi*; Osugi, Takeshi; Taniguchi, Takumi; Sato, Junya; Arai, Tsuyoshi*; Kajinami, Akihiko*
Journal of Nuclear Materials, 585, p.154610_1 - 154610_6, 2023/11
Times Cited Count:0Vauchy, R.; Hirooka, Shun; Watanabe, Masashi; Yokoyama, Keisuke; Murakami, Tatsutoshi
Journal of Nuclear Materials, 584, p.154576_1 - 154576_11, 2023/10
Times Cited Count:0 Percentile:0.02(Materials Science, Multidisciplinary)Ukai, Shigeharu; Sakamoto, Kan*; Otsuka, Satoshi; Yamashita, Shinichiro; Kimura, Akihiko*
Journal of Nuclear Materials, 583, p.154508_1 - 154508_24, 2023/09
Times Cited Count:0 Percentile:0.85(Materials Science, Multidisciplinary)Wakui, Takashi; Takagishi, Yoichi*; Futakawa, Masatoshi
Materials, 16(17), p.5830_1 - 5830_16, 2023/09
Cavitation damage on the mercury target vessel is induced by proton beam injection in mercury. The prediction method of the cavitation damage using Monte Carlo simulations was proposed taking into account of the uncertainties of the position of cavitation bubbles and impact pressure distributions. The distribution of impact pressure attributed to individual cavitation bubble collapsing was assumed to be the Gaussian distribution, and the probability distribution of the maximum value of impact pressures was assumed to be three kinds of distributions; the delta function, the Gaussian and Weibull distributions. Two parameters were estimated using Bayesian optimization by comparing the distribution of the cavitation damage obtained from experiment with that of accumulated plastic strain obtained from the simulation. It was found that the results obtained using the Weibull distribution reproduced the actual cavitation erosion phenomenon better than the other results.
Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki
Journal of Nuclear Materials, 582, p.154467_1 - 154467_12, 2023/08
Times Cited Count:0 Percentile:0.02(Materials Science, Multidisciplinary)Aoki, So; Engelberg, D. L.*
Materials, 16(15), p.5300_1 - 5300_13, 2023/08
Times Cited Count:0The objective of this study was to investigate and visualize the initiation and propagation behaviour of crevice corrosion in grade 2205 duplex stainless steel by means of time-lapse, in-situ observations. All observed crevice corrosion initiated close to the edge of the washer, where the crevice gap was very tight. Crevice corrosion then expanded underneath the crevice forming disk into areas with wider gaps towards the crevice mouth. This was associated with a rise in anodic current, leading into hydrogen gas evolution within the crevice. Once crevice corrosion reached the crevice mouth, the corrosion propagated Circumferentially, but also in depth.
Lobzenko, I.; Tsuru, Tomohito; Shiihara, Yoshinori*; Iwashita, Takuya*
Materials Research Express (Internet), 10(8), p.085201_1 - 085201_12, 2023/08
Unlike alloys with a crystal lattice, metallic glasses (MG) do not possess distinctive defects but demonstrate a highly heterogeneous response to mechanical deformation, even in near-elastic regimes. The difficulties in describing such non-uniform behavior hamper the prediction of the mechanical properties of MGs. We apply first-principles calculations of atomic stress in CuZr MG to reveal its response to shear strain. That approach allows one to probe such parameters as displacement vector, charge transfer, or change in chemical bonds on the lowest atomic level. We find correlations between the mentioned parameters and show the importance of atomic von Mises stress in the comprehensive description of the mechanical state of a glassy system.
Wang, Q.*; Ma, N.*; Huang, W.*; Shi, J.*; Luo, X.-T.*; Tomitaka, Sora*; Morooka, Satoshi; Watanabe, Makoto*
Materials Research Letters (Internet), 11(9), p.742 - 748, 2023/08
Vauchy, R.; Sunaoshi, Takeo*; Hirooka, Shun; Nakamichi, Shinya; Murakami, Tatsutoshi; Kato, Masato
Journal of Nuclear Materials, 580, p.154416_1 - 154416_11, 2023/07
Times Cited Count:1 Percentile:89.37(Materials Science, Multidisciplinary)Mori, Hideki*; Tsuru, Tomohito; Okumura, Masahiko; Matsunaka, Daisuke*; Shiihara, Yoshinori*; Itakura, Mitsuhiro
Physical Review Materials (Internet), 7(6), p.063605_1 - 063605_8, 2023/06
The introduction of obstacles (e.g., precipitates) for controlling dislocation motion in molecular structures is a prevalent method for designing the mechanical strength of metals. Owing to the nanoscale size of the dislocation core ( 1 nm), atomic modeling is required to investigate the interactions between the dislocation and obstacles. However, conventional empirical potentials are not adequately accurate, in contrast to the calculations based on density functional theory (DFT). Therefore, the atomic-level details of the interactions between the dislocations and obstacles remain unclarified. To this end, this study applied an artificial neural network (ANN) framework to construct an atomic potential by leveraging the high accuracy of DFT. Using the constructed ANN potential, we investigated the dynamic interaction between the
edge dislocation and obstacles in BCC iron. When the dislocation crossed the void, an ultrasmooth and symmetric half-loop was observed for the bowing-out dislocation. Except for the screw dislocation, the Peierls stress of all the dislocations predicted using the ANN was less than 100 MPa. More importantly, the results confirmed the formation of an Orowan loop in the interaction between a rigid sphere and dislocation. Furthermore, we discovered a phenomenon in which the Orowan loop disintegrated into two small loops during its interaction with the rigid sphere and dislocation.
Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai
Proceedings of 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM22) (Internet), 5 Pages, 2023/06
Since the 1990s, the importance of the handbook has changed significantly, as the computational power has improved and continuous energy Monte Carlo codes have become widely used, which enables highly accurate criticality calculations, when necessary, irrespective of the complexity of the system. Because the value of performing a large number of calculations in advance and summarizing the data has decreased, since the second edition was published publicly in 1999, there has been no revision of criticality safety handbooks in Japan for nearly a quarter of a century. In Japan, where the Fukushima Daiichi Nuclear Power Plant accident occurred in 2011, it became necessary to deal with criticality safety issues in the transport and storage of the fuel debris which contains complex constituent elements, and the summary the criticality safety management for such material is an urgent issue. In the area of burnup credit, the transport and storage of fuel assemblies with low achieved burnups due to the consequences of accidents might be the problem. In addition, nuclear data, which is the input for the continuous energy Monte Carlo code, has been improved several times, now JENDL-5 is available from the end of 2021, and its incorporation becomes a need in the field. This report provides an overview of the latest criticality safety research in Japan and the planned revision of the Criticality Safety Handbook, which could be applied to the transport and storage sectors.
Fang, Y.*; Kong, L.*; Wang, R.*; Zhang, Z.*; Li, Z.*; Wu, Y.*; Bu, K.*; Liu, X.*; Yan, S.*; Hattori, Takanori; et al.
Materials Today Physics (Internet), 34, p.101083_1 - 101083_7, 2023/05
Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)The layered van der Waals halides are particularly sensitive to external pressure, suggesting a feasible route to pinpoint their structure with extraordinary behavior. However, a very sensitive pressure response usually lead to a detrimental phase transition and/or lattice distortion, making the approach of materials manipulation in a continuous manner remain challenging. Here, the extremely weak interlayer coupling and high tunability of layered RhI crystals are observed. A pressure-driven phase transition occurs at a moderate pressure of 5 GPa, interlinking to a change of layer stack mode. Strikingly, such a phase transition does not affect the tendency of quasi-linear bandgap narrowing, and a metallization with an ultra-broad tunability of 1.3 eV redshift is observed at higher pressures. Moreover, the carrier concentration increases by 4 orders of magnitude at 30 GPa, and the photocurrent enhances by 5 orders of magnitude at 7.8 GPa. These findings create new opportunities for exploring, tuning, and understanding the van der Waals halides by harnessing their unusual feature of a layered structure, which is promising for future devices based on materials-by-design that are atomically thin.
Ren, Q.*; Gupta, M. K.*; Jin, M.*; Ding, J.*; Wu, J.*; Chen, Z.*; Lin, S.*; Fabelo, O.*; Rodriguez-Velamazan, J. A.*; Kofu, Maiko; et al.
Nature Materials, 22, p.999 - 1006, 2023/05
Ito, Azusa; Karmaoui, M.*; Thirunavukkarasu, G.*; Hriljac, J. A.*
APL Materials (Internet), 11(4), p.041105_1 - 041105_9, 2023/04
Times Cited Count:0 Percentile:0(Nanoscience & Nanotechnology)Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:0 Percentile:0(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in HoFe
on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Kitagaki, Toru; Krasnov, V.*; Ikeda, Atsushi
Journal of Nuclear Materials, 576, p.154224_1 - 154224_14, 2023/04
Times Cited Count:0 Percentile:0.85(Materials Science, Multidisciplinary)Nonaka, Yosuke*; Wakabayashi, Yuki*; Shibata, Goro; Sakamoto, Shoya*; Ikeda, Keisuke*; Chi, Z.*; Wan, Y.*; Suzuki, Masahiro*; Tanaka, Arata*; Tanaka, Masaaki*; et al.
Physical Review Materials (Internet), 7(4), p.044413_1 - 044413_10, 2023/04
Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)Nemoto, Yoshiyuki; Ishijima, Yasuhiro; Kondo, Keietsu; Fujimura, Yuki; Kaji, Yoshiyuki
Journal of Nuclear Materials, 575, p.154209_1 - 154209_19, 2023/03
Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)Previous studies had shown that in certain conditions, the rate of oxidation of zirconium (Zr) based alloy fuel cladding is higher in air-steam mixtures than in dry air. In severe accidents in the spent fuel pool and in other air ingress accidents in nuclear power plants, the cladding is likely to be oxidized in an air-steam mixture, which makes it crucial to have an in-depth understanding of the nature of oxidation and its kinetics in that environment. Oxidation tests were conducted at 800C on Zircaloy-4 specimens in a mix of (air+steam) with various component ratios. Oxidation kinetics, details of the oxide layer, and hydrogen pick-up in the specimen were studied to investigate the mechanism of oxidation in each of these sets of conditions. Zirconium nitride precipitation in the oxide layer during the initial stages of the pre-breakaway oxidation stage and the widespread porous oxide growth on the cladding surface in the latter post-BA oxidation stage are related to the oxidation mechanism in the air-steam mixture. The differences in the mechanism of oxidation of the cladding in dry air and air-steam mixtures are discussed based on the experimental results.
Miyazawa, Takeshi; Kikuchi, Yuta*; Ando, Masami*; Yu, J.-H.*; Yabuuchi, Kiyohiro*; Nozawa, Takashi*; Tanigawa, Hiroyasu*; Nogami, Shuhei*; Hasegawa, Akira*
Journal of Nuclear Materials, 575, p.154239_1 - 154239_11, 2023/03
Times Cited Count:0 Percentile:0.02(Materials Science, Multidisciplinary)Jiang, X.*; Hattori, Takanori; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; Yano, Shinichiro*; Chen, J.*; He, L.*; et al.
Materials Horizons, 10(3), p.977 - 982, 2023/03
Times Cited Count:1 Percentile:79.28(Chemistry, Multidisciplinary)As a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting world wide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase.