Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hirota, Akinari*; Kozuka, Mariko*; Fukuda, Akari*; Miyakawa, Kazuya; Sakuma, Keisuke; Ozaki, Yusuke; Ishii, Eiichi; Suzuki, Yohei*
Microbial Ecology, 87, p.132_1 - 132_15, 2024/10
Times Cited Count:0 Percentile:0.00(Ecology)Deep underground galleries are used to access the deep biosphere in addition to mining and other engineering applications such as geological disposal of radioactive wastes. Fracture networks developed in the excavation damaged zone (EDZ) are concerned to accelerate mass transport, where microbial colonization might be possible due to the availability of space and nutrients. In this study, microbial biofilms at EDZ fractures were investigated by drilling from a 350-m deep gallery and subsequent borehole logging at the Horonobe underground research laboratory (URL). By using microscopic and spectroscopic techniques, the dense colonization of microbial cells was demonstrated at the surfaces of the EDZ fractures with high hydraulic conductivities. 16S rRNA gene sequence analysis revealed the dominance of gammaproteobacterial lineages, the cultivated members of which are aerobic methanotrophs. Near-complete Horonobe groundwater genomes affiliated within the methanotrophic lineages were fully equipped with genes involved in aerobic methanotrophy. Although the mediation of aerobic methanotrophy remains to be demonstrated, microbial O production was supported by the presence of genes in the near-complete genomes, such as catalase and superoxide dismutase that produce O from reactive oxygen species and a nitric oxide reductase gene with the substitutions of amino acids in motifs. It is concluded that the EDZ fractures provide energetically favorable subsurface habitats to microorganisms.
Fukuda, Akari*; Hagiwara, Hiroki; Ishimura, Toyoho*; Kozuka, Mariko*; Ioka, Seiichiro*; Amano, Yuki; Tsunogai, Urumu*; Suzuki, Yohei*; Mizuno, Takashi
Microbial Ecology, 60(1), p.214 - 225, 2010/05
Times Cited Count:30 Percentile:65.37(Ecology)To better understand the geochemical and microbiological relationships, we characterized granitic groundwater collected from a 1,148 to 1,169 -m deep borehole interval at the Mizunami Underground Research Laboratory site, Japan, in 2005 and 2008. Geochemical analyses of the groundwater samples indicated that major electron acceptors, such as NO and SO, were not abundant, while dissolved organic carbon (not including organic acids), CH and H were moderately rich. The most common phylotypes were both related to spp., the cultivated members of which can utilize minor electron donors, such as aromatic and aliphatic hydrocarbons. Geomicrobiological results suggest that deep granitic groundwater has been stably colonized by spp. probably owing to the limitation of O, NO and organic acids.