Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yang, X.*; Che, G.*; Wang, Y.*; Zhang, P.*; Tang, X.*; Lang, P.*; Gao, D.*; Wang, X.*; Wang, Y.*; Hattori, Takanori; et al.
Nano Letters, 25(3), p.1028 - 1035, 2025/01
Times Cited Count:0Saturated sp-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.5 and 4 GPa. Above 20 GPa, phenol polymerizes into degree-4 CNThs featuring hydroxyl and carbonyl groups. Hydrogen transfer of hydroxyl groups was found to hinder the formation of degree-6 nanothreads. Our findings highlight the crucial role of the hydroxyl group in halting further intracolumn polymerization and offer valuable insights for future mechanism research and nanomaterial synthesis.
Watanabe, Kenta*; Horisawa, Yuhei*; Yoshimoto, Masataka*; Tamura, Kazuhisa; Suzuki, Kota*; Kanno, Ryoji*; Hirayama, Masaaki*
Nano Letters, 24(6), p.1916 - 1922, 2024/02
Times Cited Count:3 Percentile:80.53(Chemistry, Multidisciplinary)Electrochemistry has extended from reactions at solid/liquid interfaces to those at solid/solid interfaces. In this study, we achieve the stable photoelectrochemical reaction at the semiconductor-electrode/solid-electrolyte interface in Nb-doped anatase-TiO (a-TiO
:Nb)/Li
PO
(LPO)/Li all-solid-state cell. The oxidative currents of a-TiO
:Nb/LPO/Li increase upon light irradiation when a-TiO
:Nb is located at a potential that is more positive than its flat-band potential. The photoelectrochemical reaction at the semiconductor/solid-electrolyte interface is driven by the same principle as that at semiconductor/liquid-electrolyte interfaces. Thus, we extend photoelectrochemistry to all-solid-state systems composed of solid/solid interfaces.
Wang, Y.*; Kajihara, Shun*; Matsuoka, Hideki*; Saika, B. K.*; Yamagami, Kohei*; Takeda, Yukiharu; Wadachi, Hiroki*; Ishizaka, Kyoko*; Iwasa, Yoshihiro*; Nakano, Masaki*
Nano Letters, 22(24), p.9964 - 9971, 2022/12
Times Cited Count:26 Percentile:91.63(Chemistry, Multidisciplinary)He, H.*; Naeem, M.*; Zhang, F.*; Zhao, Y.*; Harjo, S.; Kawasaki, Takuro; Wang, B.*; Wu, X.*; Lan, S.*; Wu, Z.*; et al.
Nano Letters, 21(3), p.1419 - 1426, 2021/02
Times Cited Count:65 Percentile:96.34(Chemistry, Multidisciplinary)Matsuoka, Hideki*; Barnes, S. E.*; Ieda, Junichi; Maekawa, Sadamichi; Bahramy, M. S.*; Saika, B. K.*; Takeda, Yukiharu; Wadachi, Hiroki*; Wang, Y.*; Yoshida, Satoshi*; et al.
Nano Letters, 21(4), p.1807 - 1814, 2021/02
Times Cited Count:18 Percentile:76.40(Chemistry, Multidisciplinary)Meer, H.*; Schreiber, F.*; Schmitt, C.*; Ramos, R.*; Saito, Eiji; Gomonay, O.*; Sinova, J.*; Baldrati, L.*; Klui, M.*
Nano Letters, 21(1), p.114 - 119, 2021/01
Times Cited Count:59 Percentile:95.87(Chemistry, Multidisciplinary)Nakano, Masaki*; Wang, Y.*; Yoshida, Satoshi*; Matsuoka, Hideki*; Majima, Yuki*; Ikeda, Keisuke*; Hirata, Yasuyuki*; Takeda, Yukiharu; Wadachi, Hiroki*; Kohama, Yoshimitsu*; et al.
Nano Letters, 19(12), p.8806 - 8810, 2019/12
Times Cited Count:60 Percentile:91.34(Chemistry, Multidisciplinary)Hasegawa, Mika*; Sugawara, Kenta*; Suto, Ryota*; Sambonsuge, Shota*; Teraoka, Yuden; Yoshigoe, Akitaka; Filimonov, S.*; Fukidome, Hirokazu*; Suemitsu, Maki*
Nanoscale Research Letters, 10, p.421_1 - 421_6, 2015/10
Times Cited Count:18 Percentile:58.38(Nanoscience & Nanotechnology)Graphene has attracted much attention as a promising material in electronics and photonics. The graphitization temperature of 1473 K or higher of graphene-on-silicon(GOS), however, is still too high to be fully compatible with the Si technology. Here, the first application of Ni-assisted formation of graphene to the GOS method was reported. We demonstrate that the graphene formation temperature can be reduced by more than 200 K by this method. Moreover, solid-phase reactions during heating/annealing/cooling procedures have been investigated in detail by using synchrotron-radiation X-ray photoelectron spectroscopy. As a result, we clarify the role of Ni/SiC reactions, in which not only Ni silicidation and but also Ni carbonization is suggested as a key process in the formation of graphene.
Biermanns, A.*; Dimakis, E.*; Davydok, A.*; Sasaki, Takuo; Geelhaar, L.*; Takahashi, Masamitsu; Pietsch, U.*
Nano Letters, 14(12), p.6878 - 6883, 2014/12
Times Cited Count:27 Percentile:70.99(Chemistry, Multidisciplinary)Avramov, P.; Chernozatonskii, L. A.*; Sorokin, P. B.*; Gordon, M. S.*
Nano Letters, 7(7), p.2063 - 2067, 2007/07
Times Cited Count:14 Percentile:53.04(Chemistry, Multidisciplinary)Using an empirical scheme, the atomic structure of a new exotic class of silicon nanoclusters was elaborated upon the central icosahedral core (Si-IC) and pentagonal petals (Si-PP) growing from Si-IC vertexes. It was shown that Si-IC/Si-PP interface formation is energetically preferable. Some experimental observations of silicon nanostructures can be explained by the presence of the proposed objects. The extended Huckel theory electronic structure calculations demonstrate an ability of the proposed objects to act as nanoscale tunnel junctions.