Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Chong, Y.*; Gholizadeh, R.*; Tsuru, Tomohito; Zhang, R.*; Inoue, Koji*; Gao, W.*; Godfrey, A.*; Mitsuhara, Masatoshi*; Morris, J. W. Jr.*; Minor, A. M.*; et al.
Nature Communications (Internet), 14, p.404_1 - 404_11, 2023/02
Interstitial oxygen embrittles titanium, particularly at cryogenic temperatures, which necessitates a stringent control of oxygen content in fabricating titanium and its alloys. Here, we propose a structural strategy, via grain refinement, to alleviate this problem. Compared to a coarse-grained counterpart that is extremely brittle at 77K, the uniform elongation of an ultrafine-grained (UFG) microstructure (grain size 2.0
m) in Ti-0.3wt.%O was successfully increased by an order of magnitude, maintaining an ultrahigh yield strength inherent to the UFG microstructure. This unique strength-ductility synergy in UFG Ti-0.3wt.%O was achieved via the combined effects of diluted grain boundary segregation of oxygen that helps to improve the grain boundary cohesive energy and enhanced
dislocation activities that contribute to the excellent strain hardening ability. The present strategy could not only boost the potential applications of high strength Ti-O alloys at low temperatures, but could also be applied to other alloy systems, where interstitial solution hardening results into an undesirable loss of ductility.
Xu, S.*; Odaira, Takumi*; Sato, Shunsuke*; Xu, X.*; Omori, Toshihiro*; Harjo, S.; Kawasaki, Takuro; Seiner, H.*; Zoubkov, K.*; Murakami, Yasukazu*; et al.
Nature Communications (Internet), 13, p.5307_1 - 5307_8, 2022/09
Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)Funatsu, Takuya*; Kanai, Shun*; Ieda, Junichi; Fukami, Shunsuke*; Ohno, Hideo*
Nature Communications (Internet), 13, p.4079_1 - 4079_8, 2022/07
Times Cited Count:2 Percentile:78.71(Multidisciplinary Sciences)Modulation of the energy landscape by external perturbations governs various thermally-activated phenomena, described by the Arrhenius law. Thermal fluctuation of nanoscale magnetic tunnel junctions with spin-transfer torque (STT) shows promise for unconventional computing, whereas its rigorous representation, based on the Neel-Arrhenius law, has been controversial. In particular, the exponents for thermally-activated switching rate therein, have been inaccessible with conventional thermally-stable nanomagnets with decade-long retention time. Here we approach the Neel-Arrhenius law with STT utilising superparamagnetic tunnel junctions that have high sensitivity to external perturbations and determine the exponents through several independent measurements including homodyne-detected ferromagnetic resonance, nanosecond STT switching, and random telegraph noise. Furthermore, we show that the results are comprehensively described by a concept of local bifurcation observed in various physical systems. The findings demonstrate the capability of superparamagnetic tunnel junction as a useful tester for statistical physics as well as sophisticated engineering of probabilistic computing hardware with a rigorous mathematical foundation.
Chen, L.*; Mao, C.*; Chung, J.-H.*; Stone, M. B.*; Kolesnikov, A. I.*; Wang, X.*; Murai, Naoki; Gao, B.*; Delaire, O.*; Dai, P.*
Nature Communications (Internet), 13, p.4037_1 - 4037_7, 2022/07
Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)Maeyama, Shinya*; Watanabe, Tomohiko*; Nakata, Motoki*; Nunami, Masanori*; Asahi, Yuichi; Ishizawa, Akihiro*
Nature Communications (Internet), 13, p.3166_1 - 3166_8, 2022/06
Times Cited Count:2 Percentile:64.45(Multidisciplinary Sciences)Turbulent transport is a key physics process for confining magnetic fusion plasma. Recent theoretical and experimental studies of existing fusion experimental devices revealed the existence of cross-scale interactions between small (electron)-scale and large (ion)-scale turbulence. Since conventional turbulent transport modelling lacks cross-scale interactions, it should be clarified whether cross-scale interactions are needed to be considered in future experiments on burning plasma, whose high electron temperature is sustained with fusion-born alpha particle heating. Here, we present supercomputer simulations showing that electron scale turbulence in high electron temperature plasma can affect the turbulent transport of not only electrons but also fuels and ash. Electron-scale turbulence disturbs the trajectories of resonant electrons responsible for ion-scale micro-instability and suppresses large-scale turbulent fluctuations. Simultaneously, ion-scale turbulent eddies also suppress electron-scale turbulence. These results indicate a mutually exclusive nature of turbulence with disparate scales. We demonstrate the possibility of reduced heat flux via cross-scale interactions.
Otsuka, Takaharu; Abe, Takashi*; Yoshida, Toru*; Tsunoda, Yusuke*; Shimizu, Noritaka*; Itagaki, Naoyuki*; Utsuno, Yutaka; Vary, J. P.*; Maris, P.*; Ueno, Hideki*
Nature Communications (Internet), 13, p.2234_1 - 2234_10, 2022/04
Times Cited Count:1 Percentile:63.35(Multidisciplinary Sciences)no abstracts in English
Luo, P.*; Zhai, Y.*; Falus, P.*; Garca Sakai, V.*; Hartl, M.*; Kofu, Maiko; Nakajima, Kenji; Faraone, A.*; Z, Y.*
Nature Communications (Internet), 13, p.2092_1 - 2092_9, 2022/04
Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)Takagi, Rina*; Matsuyama, Naofumi*; Ukleev, V.*; Yu, L.*; White, J. S.*; Francoual, S.*; Mardegan, J. R. L.*; Hayami, Satoru*; Saito, Hiraku*; Kaneko, Koji; et al.
Nature Communications (Internet), 13, p.1472_1 - 1472_7, 2022/03
Times Cited Count:20 Percentile:99.57(Multidisciplinary Sciences)Zhang, J.*; Chen, M.*; Chen, J.*; Yamamoto, Kei; Wang, H.*; Hamdi, M.*; Sun, Y.*; Wagner, K.*; He, W.*; Zhang, Y.*; et al.
Nature Communications (Internet), 12, p.7258_1 - 7258_8, 2021/12
Times Cited Count:6 Percentile:67.39(Multidisciplinary Sciences)Ono, Koki*; Higomoto, Toshiya*; Saito, Yugo*; Uchino, Shun; Nishida, Yusuke*; Takahashi, Yoshiro*
Nature Communications (Internet), 12, p.6724_1 - 6724_8, 2021/11
Times Cited Count:7 Percentile:77.07(Multidisciplinary Sciences)Quantum transport is ubiquitous in physics. So far, quantum transport between terminals has been extensively studied in solid state systems from the fundamental point of views such as the quantized conductance to the applications to quantum devices. Recent works have demonstrated a cold-atom analog of a mesoscopic conductor by engineering a narrow conducting channel with optical potentials, which opens the door for a wealth of research of atomtronics emulating mesoscopic electronic devices and beyond. Here we realize an alternative scheme of the quantum transport experiment with ytterbium atoms in a two-orbital optical lattice system. Our system consists of a multi-component Fermi gas and a localized impurity, where the current can be created in the spin space by introducing the spin-dependent interaction with the impurity. We demonstrate a rich variety of localized-impurity-induced quantum transports, which paves the way for atomtronics exploiting spin degrees of freedom.
Chen, Y.*; Sato, Masahiro*; Tang, Y.*; Shiomi, Yuki*; Oyanagi, Koichi*; Masuda, Takatsugu*; Nambu, Yusuke*; Fujita, Masaki*; Saito, Eiji
Nature Communications (Internet), 12, p.5199_1 - 5199_7, 2021/08
Times Cited Count:2 Percentile:30.58(Multidisciplinary Sciences)Okuma, Ryutaro*; Kofu, Maiko; Asai, Shinichiro*; Avdeev, M.*; Koda, Akihiro*; Okabe, Hirotaka*; Hiraishi, Masatoshi*; Takeshita, Soshi*; Kojima, Kenji*; Kadono, Ryosuke*; et al.
Nature Communications (Internet), 12, p.4382_1 - 4382_7, 2021/07
Times Cited Count:5 Percentile:66.23(Multidisciplinary Sciences)Kikkawa, Takashi*; Reitz, D.*; Ito, Hiroaki*; Makiuchi, Takahiko*; Sugimoto, Takaaki*; Tsunekawa, Kakeru*; Daimon, Shunsuke*; Oyanagi, Koichi*; Ramos, R.*; Takahashi, Saburo*; et al.
Nature Communications (Internet), 12, p.4356_1 - 4356_7, 2021/07
Times Cited Count:11 Percentile:87.43(Multidisciplinary Sciences)Yamane, Ryo*; Komatsu, Kazuki*; Gochi, Jun*; Uwatoko, Yoshiya*; Machida, Shinichi*; Hattori, Takanori; Ito, Hayate*; Kagi, Hiroyuki*
Nature Communications (Internet), 12, p.1129_1 - 1129_6, 2021/02
Times Cited Count:16 Percentile:87.13(Multidisciplinary Sciences)Ice exhibits extraordinary structural variety in its polymorphic structures. The existence of a new form of diversity in ice polymorphism has recently been debated in both experimental and theoretical studies, questioning whether hydrogen-disordered ice can transform into multiple hydrogen-ordered phases, contrary to the known one-to-one correspondence between disordered ice and its ordered phase. Here we report a new high-pressure phase, ice XIX, which is a second hydrogen-ordered phase of ice VI. This is the first discovery to demonstrate that disordered ice undergoes different manners of hydrogen ordering. Such multiplicity can appear in all disordered ice, and it widely provides a new research approach to deepen our knowledge, for example of the crucial issues of ice: the centrosymmetry of hydrogen-ordered configurations and potentially induced (anti-)ferroelectricity. Ultimately, this research opens up the possibility of completing the phase diagram of ice.
Hirahara, Toru*; Otrokov, M. M.*; Sasaki, Taisuke*; Sumida, Kazuki*; Tomohiro, Yuta*; Kusaka, Shotaro*; Okuyama, Yuma*; Ichinokura, Satoru*; Kobayashi, Masaki*; Takeda, Yukiharu; et al.
Nature Communications (Internet), 11, p.4821_1 - 4821_8, 2020/09
Times Cited Count:30 Percentile:92.92(Multidisciplinary Sciences)Fujihara, Masayoshi*; Morita, Katsuhiro*; Mole, R.*; Mitsuda, Setsuo*; Toyama, Takami*; Yano, Shinichiro*; Yu, D.*; Sota, Shigetoshi*; Kuwai, Tomohiko*; Koda, Akihiro*; et al.
Nature Communications (Internet), 11, p.3429_1 - 3429_7, 2020/07
Times Cited Count:17 Percentile:85.69(Multidisciplinary Sciences)Kuroda, Kenta*; Arai, Yosuke*; Rezaei, N.*; Kunisada, So*; Sakuragi, Shunsuke*; Alaei, M.*; Kinoshita, Yuto*; Bareille, C.*; Noguchi, Ryo*; Nakayama, Mitsuhiro*; et al.
Nature Communications (Internet), 11, p.2888_1 - 2888_9, 2020/06
Times Cited Count:13 Percentile:73.94(Multidisciplinary Sciences)Takahashi, Ryo*; Chudo, Hiroyuki; Matsuo, Mamoru; Harii, Kazuya*; Onuma, Yuichi*; Maekawa, Sadamichi; Saito, Eiji
Nature Communications (Internet), 11, p.3009_1 - 3009_6, 2020/06
Times Cited Count:15 Percentile:81.96(Multidisciplinary Sciences)Jiang, N.*; Nii, Yoichi*; Arisawa, Hiroki*; Saito, Eiji; Onose, Yoshinori*
Nature Communications (Internet), 11, p.1601_1 - 1601_6, 2020/03
Times Cited Count:17 Percentile:83.98(Multidisciplinary Sciences)Li, X.*; Liu, P.-F.*; Zhao, E.*; Zhang, Z.*; Guide, T.*; Le, M. D.*; Avdeev, M.*; Ikeda, Kazutaka*; Otomo, Toshiya*; Kofu, Maiko; et al.
Nature Communications (Internet), 11, p.942_1 - 942_9, 2020/02
Times Cited Count:27 Percentile:91.67(Multidisciplinary Sciences)In high-performance thermoelectric materials, there are two main low thermal conductivity mechanisms: the phonon anharmonic and phonon scattering resulting from the dynamic disorder, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in -MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the intrinsic distorted rocksalt sublattice in this compound, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in
-MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.