Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 171

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Unique magnetic transition process demonstrating the effectiveness of bond percolation theory in a quantum magnet

Zheng, X.-G.*; Yamauchi, Ichihiro*; Hagihara, Masato; Nishibori, Eiji*; Kawae, Tatsuya*; Watanabe, Isao*; Uchiyama, Tomoki*; Chen, Y.*; Xu, C.-N.*

Nature Communications (Internet), 15, p.9989_1 - 9989_12, 2024/11

 Times Cited Count:0

Journal Articles

Brightening triplet excitons enable high-performance white-light emission in organic small molecules via integrating n-$$pi^*/pi$$-$$pi^*$$ transitions

Yang, Q.*; Yang, X.*; Wang, Y.*; Fei, Y.*; Li, F.*; Zheng, H.*; Li, K.*; Han, Y.*; Hattori, Takanori; Zhu, P.*; et al.

Nature Communications (Internet), 15, p.7778_1 - 7778_9, 2024/09

 Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)

Luminescent materials that simultaneously embody bright singlet and triplet excitons hold great potential in optoelectronics, signage, and information encryption. However, achieving high-performance white-light emission is severely hampered by their inherent unbalanced contribution of fluorescence and phosphorescence. Herein, we address this challenge by pressure treatment engineering via hydrogen bonding cooperativity effect to realize the mixture of n-$$pi^*/pi$$-$$pi^*$$ transitions, where the triplet state emission was boosted from 7% to 40% in isophthalic acid (IPA). A superior white-light emission based on hybrid fluorescence and phosphorescence was harvested in pressure-treated IPA, and the photoluminescence quantum yield was increased to 75% from the initial 19% (blue-light emission). In-situ high-pressure IR spectra, X ray diffraction, and neutron diffraction reveal continuous strengthening of the hydrogen bonds with the increase of pressure. Furthermore, this enhanced hydrogen bond is retained down to the ambient conditions after pressure treatment, awarding the targeted IPA efficient intersystem crossing for balanced singlet/triplet excitons population and resulting in efficient white-light emission. This work not only proposes a route for brightening triplet states in organic small molecule, but also regulates the ratio of singlet and triplet excitons to construct high-performance white-light emission.

Journal Articles

Methanotrophic ${it Methanoperedens}$ archaea host diverse and interacting extrachromosomal elements

Shi, L.-D.*; West-Roberts, J.*; Schoelmerich, M. C.*; Penev, P. I.*; Chen, L.-X.*; Amano, Yuki; Lei, S.*; Sachdeva, R.*; Banfield, J. F.*

Nature Microbiology (Internet), 9(9), p.2422 - 2433, 2024/09

 Times Cited Count:0 Percentile:0.00(Microbiology)

Journal Articles

Single-shot laser-driven neutron resonance spectroscopy for temperature profiling

Lan, Z.*; Arikawa, Yasunobu*; Mirfayzi, S. R.*; Morace, A.*; Hayakawa, Takehito*; Sato, Hirotaka*; Kamiyama, Takashi*; Wei, T.*; Tatsumi, Yuta*; Koizumi, Mitsuo; et al.

Nature Communications (Internet), 15, p.5365_1 - 5365_7, 2024/07

Journal Articles

Spectral evidence for Dirac spinons in a kagome lattice antiferromagnet

Zeng, Z.*; Zhou, C.*; Zhou, H.*; Han, L.*; Chi, R.*; Li, K.*; Kofu, Maiko; Nakajima, Kenji; Wei, Y.*; Zhang, W.*; et al.

Nature Physics, 20(7), p.1097 - 1102, 2024/07

 Times Cited Count:5 Percentile:90.70(Physics, Multidisciplinary)

Journal Articles

Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet

Han, J.*; Uchimura, Tomohiro*; Araki, Yasufumi; Yoon, J.-Y.*; Takeuchi, Yutaro*; Yamane, Yuta*; Kanai, Shun*; Ieda, Junichi; Ohno, Hideo*; Fukami, Shunsuke*

Nature Physics, 20(7), p.1110 - 1117, 2024/07

 Times Cited Count:5 Percentile:93.84(Physics, Multidisciplinary)

Quantum metric and Berry curvature are two fundamental and distinct factors to describe the geometry of quantum eigenstates. While Berry curvature is known for playing crucial roles in several condensed-matter states, quantum metric, which was predicted to induce new classes of topological phenomena, has rarely been touched, particularly in an ambient circumstance. Using a topological chiral antiferromagnet Mn$$_{3}$$Sn adjacent to Pt, at room temperature, we successfully manipulate the quantum-metric structure of electronic states through its interplay with the nanoscale spin texture at the Mn$$_{3}$$Sn/Pt interface. This is manifested by a time-reversal-odd second-order Hall effect that is robust against extrinsic electron scattering, in contrast to any transport effects from the Berry curvature. We also verify the flexibility of controlling the quantum-metric structure, as the interacting spin texture can be tuned by moderate magnetic fields or by interface engineering via spin-orbit interactions. Our work paves a way for harnessing the quantum-metric structure to unveil emerging topological physics in practical environments and to build applicable nonlinear devices.

Journal Articles

Hydrogen bond symmetrisation in D$$_2$$O ice observed by neutron diffraction

Komatsu, Kazuki*; Hattori, Takanori; Klotz, S.*; Machida, Shinichi*; Yamashita, Keishiro*; Ito, Hayate*; Kobayashi, Hiroki*; Irifune, Tetsuo*; Shimmei, Toru*; Sano, Asami; et al.

Nature Communications (Internet), 15, p.5100_1 - 5100_7, 2024/06

 Times Cited Count:1 Percentile:57.26(Multidisciplinary Sciences)

Hydrogen bond symmetrisation is the phenomenon where a hydrogen atom is located at the centre of a hydrogen bond. Theoretical studies predict that hydrogen bonds in ice VII eventually undergo symmetrisation upon increasing pressure, involving nuclear quantum effect with significant isotope effect and drastic changes in the elastic properties through several intermediate states with varying hydrogen distribution. Despite numerous experimental studies conducted, the location of hydrogen and hence the transition pressures reported up to date remain inconsistent. Here we report the atomic distribution of deuterium in D$$_2$$O ice using neutron diffraction above 100 GPa and observe for the first time the transition from a bimodal to a unimodal distribution of deuterium at around 80 GPa. At the transition pressure, a significant narrowing of the peak widths of 110 was also observed, attributed to the structural relaxation by the change of elastic properties.

Journal Articles

Current numbers of qubits and their uses

Ichikawa, Tsubasa*; Hakoshima, Hideaki*; Inui, Koji*; Ito, Kosuke*; Matsuda, Ryo*; Mitarai, Kosuke*; Miyamoto, Koichi*; Mizukami, Wataru*; Mizuta, Kaoru*; Mori, Toshio*; et al.

Nature Reviews Physics (Internet), 6(6), p.345 - 347, 2024/06

 Times Cited Count:1 Percentile:53.54(Physics, Applied)

Journal Articles

Persistent magnetic coherence in magnets

Makiuchi, Takahiko*; Hioki, Tomosato*; Shimizu, Hiroki*; Hoshi, Kojiro*; Elyasi, M.*; Yamamoto, Kei; Yokoi, Naoto*; Serga, A. A.*; Hillebrands, B.*; Bauer, G. E. W.*; et al.

Nature Materials, 23(5), p.627 - 632, 2024/05

 Times Cited Count:7 Percentile:96.63(Chemistry, Physical)

Journal Articles

Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries

Lei, Y.-J.*; Matsumura, Daiju; 15 of others*

Nature Communications (Internet), 15, p.3325_1 - 3325_12, 2024/04

 Times Cited Count:7 Percentile:95.37(Multidisciplinary Sciences)

Journal Articles

Discrete degeneracies distinguished by the anomalous Hall effect in a metallic kagome ice compound

Zhao, K.*; Tokiwa, Yoshifumi; Chen, H.*; Gegenwart, P.*

Nature Physics, 20(3), p.442 - 449, 2024/03

 Times Cited Count:4 Percentile:93.84(Physics, Multidisciplinary)

In magnetic crystals, despite the explicit breaking of time-reversal symmetry, two equilibrium states related by time reversal are always energetically degenerate. In ferromagnets, this time-reversal degeneracy is reflected in the hysteresis of the magnetic field dependence of the magnetization and, if metallic, in that of the anomalous Hall effect (AHE). Under time-reversal, both these quantities change signs but not their magnitude. Here we show that a time-reversal-like degeneracy appears in the metallic kagome spin ice HoAgGe when magnetic fields are applied parallel to the kagome plane. We find vanishing hysteresis in the field dependence of the magnetization at low temperature, but finite hysteresis in the field-dependent AHE. This suggests the emergence of states with nearly the same energy and net magnetization but different sizes of the AHE and of the longitudinal magnetoresistance. By analysing the experimental data and a minimal tight-binding model, we identify a time-reversal-like operation connecting these near-degenerate states, which is related to the non-trivial distortion of the kagome lattice in HoAgGe. Our work demonstrates the diagnostic power of transport phenomena for identifying hidden symmetries in frustrated spin systems.

Journal Articles

Latent ion tracks were finally observed in diamond

Amekura, Hiroshi*; Chettah, A.*; Narumi, Kazumasa*; Chiba, Atsuya*; Hirano, Yoshimi*; Yamada, Keisuke*; Yamamoto, Shunya*; Leino, A. A.*; Djurabekova, F.*; Nordlund, K.*; et al.

Nature Communications (Internet), 15, p.1786_1 - 1786_10, 2024/02

 Times Cited Count:1 Percentile:64.56(Multidisciplinary Sciences)

Injecting high-energy heavy ions in the electronic stopping regime into solids can create cylindrical damage zones called latent ion tracks. Although these tracks form in many materials, none have ever been observed in diamond, even when irradiated with high-energy GeV uranium ions. Here we report the first observation of ion track formation in diamond irradiated with 2-9 MeV C$$_{60}$$ fullerene ions. Depending on the ion energy, the mean track length (diameter) changed from 17 (3.2) nm to 52 (7.1) nm. High resolution scanning transmission electron microscopy (HR-STEM) indicated the amorphization in the tracks, in which $$pi$$-bonding signal from graphite was detected by the electron energy loss spectroscopy (EELS).

Journal Articles

Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys

Tsuru, Tomohito; Han, S.*; Matsuura, Shutaro*; Chen, Z.*; Kishida, Kyosuke; Lobzenko, I.; Rao, S.*; Woodward, C.*; George, E.*; Inui, Haruyuki*

Nature Communications (Internet), 15, p.1706_1 - 1706_10, 2024/02

 Times Cited Count:11 Percentile:98.40(Multidisciplinary Sciences)

Refractory high-entropy alloys (RHEAs) have attracted attention because of their potential for use in ultrahigh-temperature applications. Unfortunately, their body-centered-cubic (BCC) crystal structures make them more brittle than the ductile and fracture-resistant face-centered-cubic (FCC) HEAs. RHEAs also display significantly lower creep strengths than a leading Ni-base superalloy and its FCC matrix. To overcome these drawbacks and develop RHEAs into viable structural materials, improved fundamental understanding is needed of factors that control strength and ductility. Here we investigate two model RHEAs, TiZrHfNbTa and VNbMoTaW, and show that the former is plastically compressible down to 77 K, whereas the latter is not below 298 K. We find that hexagonal close-packed (HCP) elements in TiZrHfNbTa lower its dislocation core energy, increase its lattice distortion, and lower its shear modulus relative to VNbMoTaW whose elements are all BCC, leading to the formers higher ductility and modulus-normalized yield strength. Consistent with our yield strength models, primarily screw dislocations are present in TiZrHfNbTa after deformation, but equal numbers of edge and screw segments in VNbTaMoW. Dislocation cores are compact in VNbTaMoW and extended in TiZrHfNbTa, and different macroscopic slip planes are activated in the two RHEAs, which we attribute to the concentration of HCP elements. Our findings demonstrate how electronic structure changes related to the ratio of HCP to BCC elements can be used to control strength, ductility, and slip behavior to develop the next generation of high-temperature materials for more efficient power plants and transportation.

Journal Articles

Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co$$_{1/3}$$TaS$$_{2}$$

Park, P.*; Cho, W.*; Kim, C.*; An, Y.*; Kang, Y.-G.*; Avdeev, M.*; Sibille, R.*; Iida, Kazuki*; Kajimoto, Ryoichi; Lee, K. H.*; et al.

Nature Communications (Internet), 14, p.8346_1 - 8346_9, 2023/12

 Times Cited Count:11 Percentile:81.02(Multidisciplinary Sciences)

Journal Articles

Direct observation of topological magnon polarons in a multiferroic material

Bao, S.*; Gu, Z.-L.*; Shangguan, Y.*; Huang, Z.*; Liao, J.*; Zhao, X.*; Zhang, B.*; Dong, Z.-Y.*; Wang, W.*; Kajimoto, Ryoichi; et al.

Nature Communications (Internet), 14, p.6093_1 - 6093_9, 2023/09

 Times Cited Count:12 Percentile:92.78(Multidisciplinary Sciences)

Journal Articles

A Predicted CRISPR-mediated symbiosis between uncultivated archaea

Esser, S. P.*; Rahlff, J.*; Zhao, W.*; Predl, M.*; Plewka, J.*; Sures, K.*; Wimmer, F.*; Lee, J.*; Adam, P. S.*; McGonigle, J.*; et al.

Nature Microbiology (Internet), 8(9), p.1619 - 1633, 2023/09

 Times Cited Count:6 Percentile:77.46(Microbiology)

Journal Articles

First observation of $$^{28}$$O

Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.

Nature, 620(7976), p.965 - 970, 2023/08

 Times Cited Count:20 Percentile:95.45(Multidisciplinary Sciences)

no abstracts in English

Journal Articles

Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag$$_{8}$$SnSe$$_{6}$$

Ren, Q.*; Gupta, M. K.*; Jin, M.*; Ding, J.*; Wu, J.*; Chen, Z.*; Lin, S.*; Fabelo, O.*; Rodriguez-Velamazan, J. A.*; Kofu, Maiko; et al.

Nature Materials, 22(8), p.999 - 1006, 2023/08

 Times Cited Count:54 Percentile:99.10(Chemistry, Physical)

Journal Articles

Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials

Takagi, Hirotaka*; Takagi, Rina*; Minami, Susumu*; Nomoto, Takuya*; Oishi, Kazuki*; Suzuki, Michito*; Yanagi, Yuki*; Hirayama, Motoaki*; Khanh, N.*; Karube, Kosuke*; et al.

Nature Physics, 19(7), p.961 - 968, 2023/07

 Times Cited Count:32 Percentile:98.76(Physics, Multidisciplinary)

Journal Articles

Chiral symmetry restoration at high matter density observed in pionic atoms

Nishi, Takahiro*; Hashimoto, Tadashi; 46 of others*

Nature Physics, 19(6), p.788 - 793, 2023/06

 Times Cited Count:10 Percentile:90.49(Physics, Multidisciplinary)

171 (Records 1-20 displayed on this page)