Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Iwamoto, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Yashima, Hiroshi*; Nishio, Katsuhisa; Sugihara, Kenta*; elik, Y.*; et al.
Nuclear Instruments and Methods in Physics Research B, 544, p.165107_1 - 165107_15, 2023/11
The lack of double-differential cross-section (DDX) data for neutron production below the incident proton energy of 200 MeV hinders the validation of spallation models in technical applications, such as research and development of accelerator-driven systems (ADSs). The present study aims to obtain experimental DDX data for ADS spallation target materials in this energy region and identify issues related to the spallation models by comparing them with the analytical predictions. The DDXs for the () reactions of
Pb and
Bi in the 100-MeV region were measured over an angular range of 30
to 150
using the time-of-flight method. The measurements were conducted at Kyoto University utilizing the FFAG accelerator. The DDXs obtained were compared with calculation results from Monte Carlo-based spallation models and the evaluated nuclear data library, JENDL-5. Comparison between the measured DDX and analytical values based on the spallation models and evaluated nuclear data library indicated that, in general, the CEM03.03 model demonstrated the closest match to the experimental values. Additionally, the comparison highlighted several issues that need to be addressed in order to improve the reproducibility of the proton-induced neutron-production DDX in the 100 MeV region by these spallation models and evaluated nuclear data library.
Hironaka, Kota; Lee, J.; Koizumi, Mitsuo; Ito, Fumiaki*; Hori, Junichi*; Terada, Kazushi*; Sano, Tadafumi*
Nuclear Instruments and Methods in Physics Research A, 1054, p.168467_1 - 168467_5, 2023/09
Ratliff, H.; McGirl, N. A.*; Beach, M. R.*; Castellanos, L. A.*; Clowdsley, M. S.*; Heilbronn, L. H.*; LaTessa, C.*; Norbury, J. W.*; Rusek, A.*; Sivertz, M.*; et al.
Nuclear Instruments and Methods in Physics Research B, 542, p.87 - 94, 2023/09
Nakahara, Masaumi; Watanabe, So; Takeuchi, Masayuki; Yuyama, Takahiro*; Ishizaka, Tomohisa*; Ishii, Yasuyuki*; Yamagata, Ryohei*; Yamada, Naoto*; Koka, Masashi*; Kada, Wataru*; et al.
Nuclear Instruments and Methods in Physics Research B, 542, p.144 - 150, 2023/09
The structures of Eu complexes in the adsorbents prepared with various extractants were evaluated by ion beam induced luminescence analysis in an extraction chromatography for minor actinides recovery. The luminescence of Eu was measured with a proton beam obtained from the single-ended accelerator and an argon ion beam obtained from the azimuthally varying field cyclotron in Takasaki Ion Accelerators for Advanced Radiation Application in National Institutes for Quantum Science and Technology. In this study, it was confirmed that the spectral shape of Eu complexes in the adsorbents varied depending on the kinds of extractants, and the correlation between the change in the spectra and the structures of Eu complexes was investigated.
Arai, Yoichi; Watanabe, So; Hasegawa, Kenta; Okamura, Nobuo; Watanabe, Masayuki; Takeda, Keisuke*; Fukumoto, Hiroki*; Ago, Tomohiro*; Hagura, Naoto*; Tsukahara, Takehiko*
Nuclear Instruments and Methods in Physics Research B, 542, p.206 - 213, 2023/09
Kokubu, Yoko; Fujita, Natsuko; Watanabe, Takahiro; Matsubara, Akihiro; Ishizaka, Chika; Miyake, Masayasu*; Nishio, Tomohiro*; Kato, Motohisa*; Ogawa, Yumi*; Ishii, Masahiro*; et al.
Nuclear Instruments and Methods in Physics Research B, 539, p.68 - 72, 2023/06
Times Cited Count:0 Percentile:0.03The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has an accelerator mass spectrometer (JAEA-AMS-TONO-5MV). The spectrometer enabled us to use a multi-nuclide AMS of carbon-14 (C), beryllium-10, aluminium-26 and iodine-129, and we have recently been proceeding test measurement of chlorine-36. In response to an increase of samples, we installed a state-of-the-art multi-nuclide AMS with a 300 kV Tandetron accelerator in 2020. Recently, we are driving the development of techniques of isobar separation in AMS and of sample preparation. Ion channeling is applied to remove isobaric interference and we are building a prototype AMS based on this technique for downsizing of AMS. The small sample graphitization for
C has been attempted using an automated graphitization equipment equipped with an elemental analyzer.
Nara, Fumiko*; Watanabe, Takahiro; Kokubu, Yoko; Zhu, L.*
Nuclear Instruments and Methods in Physics Research B, 539, p.28 - 32, 2023/06
Times Cited Count:0 Percentile:0.03Lake Pumoyum Co is located on the south Tibetan Plateau. The lake terraces are developed on the eastern lake shore, and it supposed that the large lake level changes would have happened in Pumoyum Co. The in-situ terrestrial cosmogenic adionuclides can be used to estimate the earth surface processes, such as the erosion rate and exposure age dating of rocks. Here we report the results of Be values of the rock samples from the lake terraces around Pumoyum Co. The concentrations of
Be were measured by the JAEA-AMS-TONO-5MV in the Tono Geoscience Center, Japan Atomic Energy Agency. The
Be concentrations ranged from 3.78 to 10.8
10
(atoms/g), but the
Be values showed the decreasing trend following to the distance from the lake shore. This result indicates that
Be values of the rocks at the shore of Pumoyum Co could be influenced from the erosion rate or tectonic process rather than the exposure date resulting from the lake level changes.
Nauchi, Yasushi*; Sato, Shunsuke*; Hayakawa, Takehito*; Kimura, Yasuhiko; Suyama, Kenya; Kashima, Takao*; Futakami, Kazuhiro*
Nuclear Instruments and Methods in Physics Research A, 1050, p.168109_1 - 168109_9, 2023/05
Times Cited Count:0 Percentile:0.03(Instruments & Instrumentation)Measurement of neutrons from spent nuclear fuel is performed in this study using the H method, which detects 2.223 MeV
rays from neutron capture reaction of hydrogen using a highly pure germanium (HPGe) detector. The detection of the 2.223 MeV
ray is affected by intense
ray emission from fission products (FPs) because the emission rate of
rays from the FP is seven orders of magnitude higher than the emission rate of neutrons. To shield the intense
ray from the FP, the HPGe detector is placed off the axis of a collimator, whereas a polyethylene block is placed on the axis. In this geometry, the detector is shielded from the intense
rays from the FP, but the detector can measure 2.223 MeV
rays from the H
reactions in the polyethylene block. The measured count rate of the 2.223 MeV
rays is consistent with the expected rate within the statistical error, which is calculated based on the nuclide composition, which is primary
Cm, estimated via depletion and decay calculations. Accordingly, the H
method is considered feasible to quantify the number of neutron leakage from spent nuclear fuel assembly, which is applicable to certify burn up of the assembly.
Terasaka, Yuta; Uritani, Akira*
Nuclear Instruments and Methods in Physics Research A, 1049, p.168071_1 - 168071_7, 2023/04
Times Cited Count:0 Percentile:0.03(Instruments & Instrumentation)Tamura, Jun; Futatsukawa, Kenta*; Kondo, Yasuhiro; Liu, Y.*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Okabe, Kota; Yoshimoto, Masahiro
Nuclear Instruments and Methods in Physics Research A, 1049, p.168033_1 - 168033_7, 2023/04
Times Cited Count:0 Percentile:0.03(Instruments & Instrumentation)The Japan Proton Accelerator Research Complex (J-PARC) linac is a high-intensity accelerator in which beam loss is a critical issue. In the J-PARC linac, H beams are accelerated to 191~MeV by a separated drift tube linac (SDTL) and subsequently to 400~MeV by an annular-ring coupled structure (ACS). Because there are more beam loss mechanisms in H
linacs than in proton linacs, it is imperative to investigate the beam loss circumstances for beam loss mitigation. Electron-stripping phenomena, which generate uncontrollable H
particles, are characteristic beam loss factors of H
linacs. To clarify the beam loss causes in the J-PARC linac, a new diagnostic line was installed in the beam transport between the SDTL and ACS. In this diagnostic line, H
particles were separated from the H
beam, and the intensity profiles of the H
particles were successfully measured by horizontally scanning a graphite plate in the range where H
particles were distributed. By examining the intensity variation of the H
particles with different residual pressure levels, we proved that half of the H
particles in the SDTL section are generated by the residual gas stripping in the nominal beam operation of the J-PARC linac.
Kaburagi, Masaaki; Shimazoe, Kenji*; Terasaka, Yuta; Tomita, Hideki*; Yoshihashi, Sachiko*; Yamazaki, Atsushi*; Uritani, Akira*; Takahashi, Hiroyuki*
Nuclear Instruments and Methods in Physics Research A, 1046, p.167636_1 - 167636_8, 2023/01
We focus on the thickness and property controls of inorganic scintillators used for thermal neutron detection in intense -ray fields without considering pulse shape discrimination techniques. GS20
(a lithium glass) and LiCaAlF
:Ce(LiCAF:Ce) cintillators with thicknesses of 0.5 and 1.0 mm, respectively, have been employed. Pulse signals generated by photomultiplier tubes, to which the scintillators were coupled, were inserted into a digital pulse processing unit with 1 Gsps, and the areas of waveforms were integrated for 360 ns. In a
Co
-ray field, the neutron detection for GS20
with a 0.5-mm thickness was possible at dose rates of up to 0.919 Gy/h; however, for LiCAF:Ce, neutron detection was possible at 0.473 Gy/h, and it failed at 0.709 Gy/h. Threfore, in a
Co
-ray field, the neutron/
-ray discrimination of GS20
was better than that of LiCAF:Ce due to its better energy resolution and higher detection efficiency.
Fujita, Natsuko; Miyake, Masayasu*; Matsubara, Akihiro; Kokubu, Yoko; Klein, M.*; Scognamiglio, G.*; Mous, D. J. W.*; Columna, E. L.*; Shimada, Akiomi; Ishimaru, Tsuneari
Nuclear Instruments and Methods in Physics Research B, 533, p.91 - 95, 2022/12
Times Cited Count:1 Percentile:40.11(Instruments & Instrumentation)In the Tono Geoscience Center, Japan Atomic Energy Agency, investigation of deep underground environments for R&D program related to the geological disposal of High-Level Radioactive Waste has been performed by using various dating systems including an AMS system. In response to the increasing demand for our AMS measurements especially from a newly established R&D program supporting development of technology for geological disposal of HLW, a state-of-the-art multi-nuclide AMS system was installed. This system is equipped with a 300 kV AMS. The system has capability to measure four nuclides: carbon-14, beryllium-10, aluminium-26 and iodine-129. The system structure and features, as well as the results of performance test will be presented.
Fujita, Natsuko; Matsubara, Akihiro; Kimura, Kenji; Jinno, Satoshi; Kokubu, Yoko
Nuclear Instruments and Methods in Physics Research B, 532, p.13 - 18, 2022/12
Times Cited Count:1 Percentile:40.11(Instruments & Instrumentation)Over the last decade, significant technological advances were made to downsize the AMS systems. Japan Atomic Energy Agency has started a project for developing a prototype downsized AMS system (with the footprint of the system is 1.9 m 1.9 m) based on the surface stripper technique. Although the system configuration using an ion source, magnets, and detectors is similar to that in conventional systems, there is no tandem accelerator as well as a gas stripper. The ion acceleration is provided in the ion source (maximum ion energy 40 keV). For proof-of-principle experiments, we have planned two steps: (1) Observation of the specular reflection and the dissociation by using a compact electrostatic analyzer located just behind the stripper, and (2) Demonstration of
C measurement, along with the experimental confirmation of the isobar suppression capability of the surface stripper.
Koizumi, Mitsuo; Mochimaru, Takanori*; Hironaka, Kota; Takahashi, Tone; Yamanishi, Hirokuni*; Wakabayashi, Genichiro*
Nuclear Instruments and Methods in Physics Research A, 1042, p.167424_1 - 167424_6, 2022/11
Times Cited Count:1 Percentile:63.62(Instruments & Instrumentation)no abstracts in English
Fujita, Manami; Hosomi, Kenji; Ishikawa, Yuji*; Kanauchi, H.*; Koike, Takeshi*; Ogura, Yu*; Tamura, Hirokazu; Tanida, Kiyoshi; Ukai, Mifuyu*; Yamamoto, Takeshi
Nuclear Instruments and Methods in Physics Research A, 1042, p.167439_1 - 167439_9, 2022/11
Times Cited Count:1 Percentile:40.11(Instruments & Instrumentation)Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; Sugiyama, Yasuyuki*
Nuclear Instruments and Methods in Physics Research A, 1041, p.167361_1 - 167361_7, 2022/10
Times Cited Count:0 Percentile:40.11(Instruments & Instrumentation)Wideband RF cavities are employed in the Rapid Cycling Synchrotron of the Japan Proton Accelerator Research Complex. RF gap voltage generated during the high power beam acceleration includes the wake voltage and distortion derived from the tube amplifier. The signal from RF gap voltage monitors, which measure the RF gap voltage during the acceleration, includes these effects. We developed the longitudinal beam tracking simulation using the measurement of the RF gap voltage monitors. To apply the measurement of the RF gap voltage monitors to the simulation, the theoretical frequency response models of the voltage divider and the coaxial cable, which are the primary components of the cavity gap voltage monitor, are developed. By taking the frequency response into account, the tracking simulation well reproduces the measured bunch shape at 1 MW.
Isegawa, Kazuhisa; Setoyama, Daigo*; Higuchi, Yuki*; Matsumoto, Yoshihiro*; Nagai, Yasutaka*; Shinohara, Takenao
Nuclear Instruments and Methods in Physics Research A, 1040, p.167260_1 - 167260_10, 2022/10
Times Cited Count:1 Percentile:40.11(Instruments & Instrumentation)Otosaka, Shigeyoshi*; Jeon, H.*; Hou, Y.*; Watanabe, Takahiro; Aze, Takahiro*; Miyairi, Yosuke*; Yokoyama, Yusuke*; Ogawa, Hiroshi*
Nuclear Instruments and Methods in Physics Research B, 527, p.1 - 6, 2022/09
Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)The measurement the radiocarbon of dissolved organic matter (DOC) in seawater can provide information about a timescale of the dynamics of dissolved organic matter as well as about its sources in the ocean. Due to the low DOC concentration in seawater, in spite of the development of accelerator mass spectrometry, a relatively large volume of seawater (
1 L) is required for that analysis. In addition, complicated processing such as UV irradiation that emits high heat is required. In this study, we have developed a safer and easier method to analyze DO
C in seawater than the conventional method. A particularly significant change was the adoption of a low-pressure mercury lamp in the decomposition system, which enabled direct decomposition of organic matter at lower temperatures. We also propose a method to quantitatively evaluate the accuracy of this system by analyzing simulated seawater consists of a soluble reference material of organic matter and sodium chloride. This method is expected to be applied not only to carbon isotope ratio analysis but also to analysis of trace elements and isotopes of various dissolved organic substances.
Takeshita, Hayato*; Meigo, Shinichiro; Matsuda, Hiroki*; Iwamoto, Hiroki; Nakano, Keita; Watanabe, Yukinobu*; Maekawa, Fujio
Nuclear Instruments and Methods in Physics Research B, 527, p.17 - 27, 2022/09
Times Cited Count:0 Percentile:40.11(Instruments & Instrumentation)To improve accuracy of nuclear design of accelerator driven nuclear transmutation systems and so on, nuclide production cross sections on Ni and Zr were measured for GeV energy protons. The measured results were compared with PHITS calculations, JENDL/HE-2007 and so on.
Terasaka, Yuta; Watanabe, Kenichi*; Uritani, Akira*
Nuclear Instruments and Methods in Physics Research A, 1034, p.166793_1 - 166793_6, 2022/07
Times Cited Count:1 Percentile:40.11(Instruments & Instrumentation)