Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Chishiro, Etsuji; Sagawa, Ryu*; Toriyama, Minoru*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.400 - 402, 2016/11
Klystron power supplies in the J-PARC have been generated high voltage DC power by chopping 12-phase AC voltage power by thyristors, and boosting the voltage up to 110 kV in step-up transformer and rectifying the voltage in high voltage rectifiers. Some of the high voltage transformers (HVTR), which consist of the step-up transformer and the high voltage rectifier and the reactor, were often broken in the running time of over 30,000 hours. This failure caused the long-term shut down of the J-PARC facility. The high voltage rectifier composed diodes and condensers by a series connection of 66 stages. Investigation of the failed rectifier shows that the capacitors ware applied the overvoltage because the flashover occurred on the ceramic surface. We investigated the mechanisms applying the overvoltage and took measure for the overvoltage to the rectifier. The HVTR with the improved rectifier has been operating for long term to assess the modification effect.
Harada, Hiroyuki; Saha, P. K.; Yamane, Isao*; Kato, Shinichi; Kinsho, Michikazu; Irie, Yoshiro*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.983 - 986, 2016/11
The high-intensity proton accelerator adopts a charge exchange injection scheme, which injects with exchanging from negative Hydrogen ion to proton by using carbon foil. This scheme can realize high intensity proton beam but the uncontrolled beam losses are caused by scattering between beams and the foil. Additionally, the collision may occur the foil beak. Therefore, a new injection scheme for higher intensity is needed as an alternative to the foil. In the J-PARC 3GeV RCS, we newly propose and develop a laser stripping injection scheme However, it is necessary that laser power is two order higher than latest laser one. To realize this big issue, we develop the laser storage ring, which can provide laser pulse of high repetition rate by recycling one. In this presentation, we will introduce the laser stripping injection scheme and describe the concept of the laser storage ring with high repetition rate.
Matsuda, Makoto; Osa, Akihiko; Ishizaki, Nobuhiro; Tayama, Hidekazu; Nakanoya, Takamitsu; Kabumoto, Hiroshi; Nakamura, Masahiko; Kutsukake, Kenichi; Otokawa, Yoshinori; Asozu, Takuhiro
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1413 - 1417, 2016/11
The tandem accelerator was operated over a total of 140 days and delivered 22 different ions to the experiments in the fields of nuclear physics, nuclear chemistry, atomic physics, solid state physics and radiation effects in material. Maximum accelerating voltage is keeping up 18 MV and there was used for ten days on this voltage. However, electric discharge was occurred frequently in December and accelerating voltage fell to 12 MV. The damaged acceleration tubes were replaced with the spare tube at the regular maintenance period in March. The superconducting booster was not operated. This paper describes the operational status of the accelerators and the major technical developments.
Sawabe, Yuki*; Ishiyama, Tatsuya; Takahashi, Daisuke; Kato, Yuko; Suzuki, Takahiro*; Hirano, Koichiro; Takei, Hayanori; Meigo, Shinichiro; Kikuzawa, Nobuhiro; Hayashi, Naoki
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.647 - 651, 2016/11
In the J-PARC, a 3 MeV linac has been developed for the tests of beam scraper irradiation and charge exchange by high-power laser. To accomplish tests efficiently and safely, the control system for 3 MeV was designed and developed, and this system consists of four subsystems, personal protection system, machine protection system, timing system, and remote control system using the EPICS. In this paper, the details of control system for a 3 MeV linac are presented.
Saha, P. K.; Shobuda, Yoshihiro; Hotchi, Hideaki; Harada, Hiroyuki
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.125 - 129, 2016/11
Futatsukawa, Kenta*; Kobayashi, Tetsuya*; Sato, Yoshikatsu; Shinozaki, Shinichi; Fang, Z.*; Fukui, Yuji*; Mizobata, Satoshi; Michizono, Shinichiro*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.327 - 331, 2016/11
In the J-PARC linac, an intermediate-pulse with the comb-like structure is shaped by kicking an unwanted beam by the chopper cavity. Therefore, the cavities lying downstream of the RF-chopper have the beam loading with this beam shape. The present feedforward system which assumes the averaged beam current and not the comb-like beam was operated in the present LLRF, because the beam current in the linac was lower than the design value. However, it has been difficult that the required precision for the RF system is satisfied with increasing beam current. Thus, we performed the beam study of the beam loading compensation with the same shapes as the intermediate-pulses. The positive results for the cavities of SDTL and DTL with high Q values were obtained compared to the present system. On the other hand, when this compensation system was used in the case of ACS cavities, the neighbor modes were excited by the input RF. We have to improve the FF system for the operation against the real beam.
Hori, Toshihiko*; Shinozaki, Shinichi; Sato, Yoshikatsu; Mizobata, Satoshi; Fukui, Yuji*; Futatsukawa, Kenta*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.429 - 432, 2016/11
The triode klystrons with a modulating anode have been used for the J-PARC linac. Recently, we exchanged four klystrons due to the frequent discharge at a modulating anode in the klystron tube. In order to understand the discharge mechanism and to estimate the time to replace the klystron, we need to monitor the long term performance of the klystron such as the degradation of a cathode emission current and the RF gain of the klystron tube and so on. Therefore, we started to develop the klystron perveance and gain monitor module (NIM Standard one). In this paper, we will present the design concept of the monitor module, and the first performance test result using the module prototype.
Hirano, Koichiro; Asano, Hiroyuki; Ishiyama, Tatsuya; Ito, Takashi; Okoshi, Kiyonori; Oguri, Hidetomo; Kondo, Yasuhiro; Kawane, Yusuke; Kikuzawa, Nobuhiro; Sato, Yoshikatsu; et al.
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.310 - 313, 2016/11
We have used a beam scraper with the incident angle of 65deg to reduce the beam power deposition density in the MEBT between a 324 MHz RFQ and a 50-MeV DTL of the J-PARC linac. The 65 scraper was irradiated by the H
beam up to particle number of 1.47E22. We observed a lot of surface projections with several hundred micrometers high in the beam irradiation damage on the scraper by using the laser microscope. In order to study the limits of scrapers, we constructed a new 3 MeV linac at J-PARC. We will conduct the scraper irradiation test at the end of this year.
Sugimura, Takashi*; Maruta, Tomofumi*; Hirano, Koichiro
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.307 - 309, 2016/11
There is an upgrade plan of J-PARC (Japan Proton Accelerator Research Complex) Linac from currently operated beam parameters such as, beam current of 40 mA, beam pulse width of 0.5msec and repetition of 25 Hz, to 50 mA, 0.5msec and 50 Hz, respectively. To reduce beam loss during a beam acceleration is a must task to accelerate a high power beam. At J-PARC Linac, a beam from an ion source followed by RFQ (Radio Frequency Quadrupole) injected into a series of DTLs (Drift Tube Linac) through a MEBT1 (Medium Energy Beam Transport 1), where a beam matching and a beam pulse forming are carried out at the beam energy of 3 MeV. There are some locally activated spots in DTL area at the current beam power level so that some kind of mitigation measure is required. Beam simulation results show that the beam loss at the DTL area can be reduced if there is a pair of vertical beam collimators. This paper reports a design and fabrication status of new vertical collimators.
Kondo, Yasuhiro; Hasegawa, Kazuo; Ito, Takashi; Artikova, S.; Otani, Masashi*; Mibe, Tsutomu*; Naito, Fujio*; Yoshida, Mitsuhiro*; Kitamura, Ryo*; Iwashita, Yoshihisa*; et al.
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.66 - 69, 2016/11
We are developing a muon linac for the measurement of the muon anomalous magnetic moment and search for the muon electric dipole moment to explore beyond the Standard Model of elementary particle physics. This muon linac accelerate from room temperature to 212 MeV with normalized transverse emittances of about 1.5 mm mrad. The muon linac consists of an ultra-slow muon source, a radio frequency quadrupole (RFQ) linac, an inter-digital H-mode drift tube linac (IH-DTL), a disk and washer coupled cavity linac (DAW CCL), and disk loaded structure (DLS) traveling-wave linac. In this paper, the status of the muon linac development, especially, the beam dynamics simulation is descried.
Otani, Masashi*; Mibe, Tsutomu*; Yoshida, Mitsuhiro*; Hasegawa, Kazuo; Kondo, Yasuhiro; Hayashizaki, Noriyosu*; Iwashita, Yoshihisa*; Iwata, Yoshiyuki*; Kitamura, Ryo*; Saito, Naohito
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.858 - 862, 2016/11
We have developed an interdigital H-mode (IH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 and 0.195
mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.
Kitamura, Ryo*; Otani, Masashi*; Fukao, Yoshinori*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Kondo, Yasuhiro; Hasegawa, Kazuo; Ishida, Katsuhiko*; et al.
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.476 - 479, 2016/11
The muon linear accelerator for the muon g-2/EDM experiment in J-PARC is being developed. As the first step of the muon acceleration, the muon acceleration with J-PARC RFQ (Radio-Frequency Quadrupole)-II plans to be demonstrated at H-line of J-PARC MLF. The slow muon will be obtained by the deceleration using the thin metal foil target in the RFQ acceleration test. The intensity of the decelerated muon by the thin metal foil was measured. Based on this result, the beam intensity in the RFQ test at H-line is estimated to be a few /sec. The particle simulation of the RFQ and the following beam diagnostics system is conducted, and it is shown that the emittance measurement at the RFQ exit using the micro-channel plate based beam profile monitor is feasible.
Naito, Fujio*; Anami, Shozo*; Ikegami, Kiyoshi*; Uota, Masahiko*; Ouchi, Toshikatsu*; Onishi, Takahiro*; Oba, Toshiyuki*; Obina, Takashi*; Kawamura, Masato*; Kumada, Hiroaki*; et al.
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1244 - 1246, 2016/11
The proton linac installed in the Ibaraki Neutron Medical Research Center is used for production of the intense neutron flux for the Boron Neutron Capture Therapy (BNCT). The linac consists of the 3-MeV RFQ and the 8-MeV DTL. Design average beam current is 10mA. Target is made of Beryllium. First neutron production from the Beryllium target was observed at the end of 2015 with the low intensity beam as a demonstration. After the observation of neutron production, a lot of improvement s was carried out in order to increase the proton beam intensity for the real beam commissioning. The beam commissioning has been started on May 2016. The status of the commissioning is summarized in this report.
Miyao, Tomoaki*; Maruta, Tomofumi*; Liu, Y.*; Miura, Akihiko
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1094 - 1096, 2016/11
no abstracts in English
Miura, Akihiko; Yoshimoto, Masahiro; Okabe, Kota; Yamane, Isao*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1102 - 1106, 2016/11
no abstracts in English
Kurihara, Toshikazu*; Kobayashi, Hitoshi*; Sugimura, Takashi*; Hirano, Koichiro
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.814 - 816, 2016/11
A problem of irradiation damage is the one observed in each part of a component of particle accelerators; accelerating tubs, scrapers, monitors and neutron targets. In-situ observation by an actual proton accelerator is made our last target. We observed the radiation damage of the various materials used by particle accelerators. From the distant place the target which is in the high radiation area, we propose the method to get information from the catoptric light from the target using a laser as a light source. A principle of this observation method as well as generating process of blisterings and limitation of this method will be reported.
Tamura, Fumihiko; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; Hara, Keigo*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.808 - 810, 2016/11
J-PARC MR provides high intensity proton beams of 390 kW to the neutrino experiment. The proton beams are extracted by fast extraction. It has been found that the cavity voltage goes up for about 20 s just after extraction. It is because the rf feed forward system for beam loading compensation outputs compensation signals for its system delay. The MR cavity has a relatively low Q value of 22 and the cavity voltage can varies in the order of 10
s. The voltage variation of the cavity voltage increases with the beam intensity and it is a possible reason of the damage of the gap capacitors. A counter measure using the inhibit function of the summation amplifier in the LLRF system has been applied. In this presentation, we present the details of the cavity voltage variation and the results of the counter measure. Also, we present the analysis of beam loading using the voltage variation.
Ikeda, Hiroshi; Kikuzawa, Nobuhiro; Yoshii, Akinobu*; Kato, Yuko
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.637 - 640, 2016/11
no abstracts in English
Togashi, Tomohito; Takayanagi, Tomohiro; Yamamoto, Kazami; Kinsho, Michikazu
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.725 - 728, 2016/11
The 3-GeV RCS (Rapid Cycling Synchrotron) at J-PARC (Japan Proton Accelerator Research Complex) has the pulse kicker power supply system which use the thyratron switches for beam extraction. It has passed from operation starting for more than 10 years, but an exchange of a part and check are being put into effect periodically, so a kicker power supply also keeps operation smoothly now. I spent long time and studied how to use, so thyratron could be used now for more than 10,000 hours. But long years have passed, so selection of a substitute of a discontinuance part is a pending problem. Silicon oil has also degraded, so I have to consider a way of a performance recovery and a procedure of an exchange. This report explains the current state of the kicker magnet power supply from a result of the regular inspection and conditions.
Suganuma, Kazuaki; Hiroki, Fumio; Ito, Takashi; Yamazaki, Yoshio
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.304 - 306, 2016/11
J-PARC LINAC has a problem that the amount of the flowing water is reduced. It spends such time from alarm to the restoration that it is desirable to take measures. So we have to solve this problem. We tried to focus again on the related water level fluctuation in the storage tank of cooling water equipment and the flow rate fluctuation all of the cooling water that has observed in cooling water equipment named RI4 from RFQ to SDTL of the LINAC. At the same time, we check new information of the operating data. We have hypothesized about the cause of fluctuation of the whole flow rate. That can be deterioration of water quality and lacking of performance of circulation pumps. That can be deterioration of water quality and lacking of performance of circulation pumps.