※ 半角英数字
 年 ~ 
検索結果: 5 件中 1件目~5件目を表示
  • 1


Initialising ...



Initialising ...


Initialising ...


Initialising ...


Initialising ...


Initialising ...


Initialising ...


Initialising ...



Investigation of irradiation conditions for recurrent breast cancer in JRR-4

堀口 洋徳; 中村 剛実; 熊田 博明*; 柳衛 宏宣*; 鈴木 実*; 佐川 尚司

Proceedings of 14th International Congress on Neutron Capture Therapy (ICNCT-14) (CD-ROM), p.234 - 237, 2010/10



Resumption of JRR-4 and characteristics of the neutron beam for BNCT

中村 剛実; 堀口 洋徳; 岸 敏明; 本橋 純; 笹島 文雄; 熊田 博明*

Proceedings of 14th International Congress on Neutron Capture Therapy (ICNCT-14) (CD-ROM), p.379 - 382, 2010/10



Multistep lattice-voxel method utilizing lattice function for Monte-Carlo treatment planning with pixel based voxel model

熊田 博明*; 斎藤 公明; 中村 剛実; 榮 武二*; 櫻井 英幸*; 松村 明*; 小野 公二*

Proceedings of 14th International Congress on Neutron Capture Therapy (ICNCT-14) (CD-ROM), p.238 - 241, 2010/10

In treatment planning for BNCT, Monte-Carlo method for the dose calculation is being generally applied. For JCDS-FX as a new treatment planning system, PHITS, a multi-purpose Monte-Carlo code has been employed to dose calculation. For the dose calculation for a human body, JCDS-FX can make a precise voxel model consisting of pixel based voxel cells like 0.4$$times$$0.4$$times$$2.0 mm$$^{3}$$ voxel in order to perform high-accuracy dose estimation. However, the miniaturization of the voxel size causes calculation time to increase. The aim of this study is to investigate sophisticated modeling method which can perform Monte-Carlo calculation for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep lattice-voxel method" which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The verification results demonstrated that the Multistep lattice-voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy dose estimation.


Characteristics measurement of thermal neutron filter developed for improvement of therapeutic dose distribution of JRR-4

熊田 博明*; 中村 剛実; 堀口 洋徳; 松村 明*

Proceedings of 14th International Congress on Neutron Capture Therapy (ICNCT-14) (CD-ROM), p.414 - 417, 2010/10

In most of clinical studies of BNCT performed at JRR-4, dose given to a patient has been controlled in accordance with limitation of not brain dose in the body but skin dose. This is attributed to the high thermal neutron component of the epithermal neutron beam of JRR-4. The aim of this study is to enhance the therapeutic dose around tumor region by decreasing the thermal neutrons mixed in the beam. To reduce the thermal neutrons, we made a prototype of thermal neutron filter which can cut the thermal neutrons at just before patient. To verify the performance of the filter and the characteristics of the epithermal neutron beam with the filter, phantom irradiation experiments were carried out. And then the experimental values and Monte-Carlo calculations which had been performed to design the filter were compared. The verification results demonstrated that the application of the filter enabled to reduce the skin dose and to enhance the therapeutic dose at deeper region in a body. And the filter application also brings on extension of the irradiation time. We will perform further characteristic measurements for the filter in order to apply the filter to the clinical trials in practical use.


Feasible evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion

柳衛 宏宣*; 熊田 博明*; 中村 剛実; 東 秀史*; 生嶋 一朗*; 森下 保幸*; 篠原 厚子*; 藤原 光輝*; 鈴木 実*; 櫻井 良憲*; et al.

Proceedings of 14th International Congress on Neutron Capture Therapy (ICNCT-14) (CD-ROM), p.157 - 160, 2010/10

In the treatment of hepatocellular carcinoma (HCC), only 30 % patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in BNCT is necessary to accumulate a sufficient quantity of $$^{10}$$B atoms in tumour cells. In this study, we prepared BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), BSH and surfactant, for selective intra-arterial infusion to HCC, and performed the neutron dosimetry using CT scan imaging of HCC patient. The $$^{10}$$B concentrations in VX-2 tumour obtained by delivery with WOW emulsion was superior to those by conventional IPSO mix emulsion. In case of HCC, we performed the feasibility estimation of 3D construction of tumor according to the CT imaging of a patient with epithermal neutron mode at JRR-4. Normal liver biologically weighted dose is restricted to 4.9 Gy-Eq; the max., min. and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 minutes irradiation. In this study, we show that $$^{10}$$B entrapped WOW emulsion could be applied to novel intra-arterial boron delivery carrier for BNCT.

5 件中 1件目~5件目を表示
  • 1