Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Lebel, L. S.*; Morreale, A. C.*; Freitag, M.*; Gupta, S.*; Allelein, H.-J.*; Klauck, M.*; Sun, Haomin; Herranz, L. E.*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03
Hirose, Yoshiyasu; Kukita, Yutaka; Shibamoto, Yasuteru; Sagawa, Jun*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 12 Pages, 2022/03
Dehbi, A.*; Cheng, X.*; Liao, Y.*; Okagaki, Yuria; Pellegrini, M.*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 15 Pages, 2022/03
Soma, Shu; Abe, Satoshi; Shibamoto, Yasuteru; Ishigaki, Masahiro*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 13 Pages, 2022/03
Tanaka, Masaaki; Doda, Norihiro; Mori, Takero; Yokoyama, Kenji; Uwaba, Tomoyuki; Okajima, Satoshi; Matsushita, Kentaro; Hashidate, Ryuta; Yada, Hiroki
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03
Japan Atomic Energy Agency is developing an innovative design system named ARKADIA to achieve the design of an advanced nuclear reactor as a safe, economic, and sustainable carbon-free energy source. In the first phase of its development, ARKADIA-Design for design study and ARKADIA-Safety for safety assessment will be developed individually. In this paper, focusing on the ARKADIA-Design, the concept of the system is described and numerical analysis codes to be used for the multi-level and multi-physics analyses are introduced. Descriptions of the practical functions composed by the analysis codes and the representative problems in application studies for validation are introduced.
Sugawara, Takanori; Watanabe, Nao; Ono, Ayako; Nishihara, Kenji; Ichihara, Kyoko*; Hanzawa, Kohei*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 10 Pages, 2022/03
Japan Atomic Energy Agency (JAEA) has investigated an accelerator-driven system (ADS) to transmute minor actinides (MAs) included in high level wastes discharged from nuclear power plants. The ADS is a lead-bismuth cooled tank-type reactor with 800 MW thermal power. It is supposed that the ADS is safer than conventional critical reactors because it is operated in a subcritical state. The previous study performed the transient analyses for the typical ADS accidents such as unprotected loss of flow or beam overpower. It was shown that all calculation cases except loss of heat sink (LOHS) satisfied the no-damage criteria. To avoid the damage by LOHS, the ADS equips Direct Reactor Auxiliary Cooling System (DRACS) to remove the decay heat. The most important points of a DRACS operation are its reliability and to ensure the flowrate in a natural circulation state. This study aims to perform the CFD analysis of the natural circulation to clarify the flowrate in the ADS reactor vessel.
Yamano, Hidemasa; Morita, Koji*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03
For a severe accident (SA) simulation of sodium-cooled fast reactors, a eutectic reaction model between boron carbide (BC) and stainless steel (SS) has been developed to be incorporated into the SA simulation codes: SIMMER-III/IV. To confirm the applicability of SIMMER-IV involving the eutectic reaction model to reactor simulations, this study has preliminarily applied this code with the newly developed physical model to a SA simulation of a large-scale SFR designed in Japan. The simulation results show that the eutectic reaction is caused by the contact between the liquid SS and the broken BC pellets which are released to the coolant channel after the failure of cladding which is melted by the mixture of liquid SS and fuel particles coming from the neighboring fuel assemblies. The liquid eutectic material formed by the reaction stayed in the control assembly and the neighboring fuel assemblies. This preliminary simulation shows that the spreading area of BC-SS eutectic formation is limited within this calculation time.
Marchetto, C.*; Ha, K. S*; Herranz, L. E.*; Hirose, Yoshiyasu; Jankowski, T.*; Lee, Y.*; Nowack, H.*; Pellegrini, M.*; Sun, X.*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 17 Pages, 2022/03
Kosaka, Wataru; Uchibori, Akihiro; Takata, Takashi; Yanagisawa, Hideki*; Watanabe, Akira*; Jang, S.*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 11 Pages, 2022/03
For the safety assessment of a steam generator (SG) in a sodium-cooled fast reactor, the analysis code LEAP-III can evaluate the water leak rate during the long-term event progress including the tube failure propagation triggered by an occurrence of a small water leak in a failed heat transfer tube in SG. The LEAP-III has the advantage in completing the calculation with low computational cost since it consists of semi-empirical formulae and one-dimensional equations of conservation. However, an evaluation model of temperature distribution by the reacting jet provides wider high temperature region than the experimental data. As a result, LEAP-III shows excessive conservativeness in some case. A Lagrangian particle method code based on engineering approaches has been developed in order to improve this model to get more realistic temperature distribution. In this method, the jet behavior and chemical reaction are simulated using Newton's equation of motion with several engineering approximations instead of solving multi-dimension multiphase thermal hydraulic equations with sodium-water reaction. In this study, interparticle interaction force model was added, and also the chemical reaction and gas-liquid heat transfer evaluation models were improved. We conducted a test analysis, and compared the results by this particle method with the ones by SERAPHIM, that is a mechanistic analysis code for multi-dimensional multiphase flow considering compressibility and sodium-water reaction. Through this test analysis, it confirmed that this particle method has the basic capability to get a realistic temperature distribution with low computational cost, and also to predict tube failure occurrence by coupled with LEAP-III.
Horiguchi, Naoki; Yoshida, Hiroyuki; Yamamura, Sota*; Fujiwara, Kota*; Kaneko, Akiko*; Abe, Yutaka*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 14 Pages, 2022/03
Ono, Ayako; Yamashita, Susumu; Suzuki, Takayuki*; Yoshida, Hiroyuki
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03
JAEA is developing the methodology to predict the critical heat flux based on a mechanism in order to reduce the cost for full mock-up test. The evaluation method based on a mechanism is expected to be able to predict in the wide range of parameter under the unexpected conditions including the severe accident. In this study, the JUPITER code developed by JAEA is examined to apply for the two-phase flow simulation of LWR fuel assembly with the spacer grid. The benchmark data of single-phase flow in the bundle with the spacers by KAERI were used to validate the simulation result by JUPITER. Moreover, the single-phase flow simulation was conducted by another simulation method, STAR-CCM+, as a supplemental analysis to consider the effect of the different simulation methods. Finally, the two-phase flow simulation for the bundle with the spacer was conducted by JUPITER. The effect of the spacer with a vane on the bubble behavior is discussed.
Lind, T.*; Herranz, L. E.*; Sonnenkalb, M.*; Maruyama, Yu
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 15 Pages, 2022/03
Gupta, S.*; Herranz, L. E.*; Lebel, L. S.*; Sonnenkalb, M.*; Pellegrini, M.*; Marchetto, C.*; Maruyama, Yu; Dehbi, A.*; Suckow, D.*; Krkel, T.*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03
Uchida, Mao*; Alzahrani, H.*; Shiono, Mikihito*; Sakai, Takaaki*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03
Gas entrainment from cover gas is one of key issues for sodium-cooled fast reactors design to prevent unexpected effects to core reactivity. A vortex model based evaluation method has been developed to evaluate the surface vortex gas core growth at the free surface in the reactor vessel. In this study, water experiments were performed to clarify the prediction accuracy for the vortex gas core growth during the vortex drift motion using a circulating water tunnel with an open flow channel test section. Gas core growth were predicted by applying the evaluation method to the numerical analyses performed in the same geometry of the experiments, and compared with the experimental results. It was observed the gas core growth became large at downstream region where downward velocity became large in experiment. However, the gas core length which were predicted from numerical result showed a discrepancy with the experimental result on the peak position and an overestimation of peak value.
Obayashi, Hironari; Yamaki, Kenichi*; Kita, Satoshi*; Ariyoshi, Gen; Sasa, Toshinobu
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 11 Pages, 2022/03
JAEA developed a non-contact type flowmeter that two ultrasonic sensors were installed on outer surface of a cylindrical-shaped test section. The considerable issue of the realization was multiple reflection of emitted signal in the piping. Furthermore, wettability between LBE and inner surface of the test section was one of the important issue on the ultrasonic technique. To mitigate the multiple reflection, a critical angle as an incident angle not to produce a longitudinal wave on the solid / solid boundary was applied. And fine mirror-finished treatment was applied to the inner surface of the test section to ensure wettability. As a result of experiment at 350 degrees C, the observed correlation value between the non-contact type and the established plug type was 0.9986. Additionally, the developed non-contact type provided its sufficiently stable output during a long-term test more than 1,500 hours.
Ariyoshi, Gen; Obayashi, Hironari; Saito, Shigeru; Sasa, Toshinobu
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 10 Pages, 2022/03
To clarify the flow characteristics of heavy liquid-metal (HLM) is important to achieve the construction of nuclear transmutation facility that utilizes HLM as a spallation target and coolant. At present, lead-bismuth eutectic (LBE) spallation target plans to be installed in Japan proton accelerator research complex (J-PARC). LBE is also selected as one of the candidate media of a spallation target and a coolant for innovative nuclear systems such as accelerator-driven system (ADS) and LBE-cooled fast reactor, due to its adequate physical/chemical properties. The characteristics of LBE flowing inside the target are usually clarified with computational fluid dynamics analysis since the measurement techniques for the HLM flow are not well established, especially for high temperature region over 450C that is delivered from ADS's criteria. Therefore, the objective of this study is to develop measurement method for flow characteristics in the high temperature LBE. A miniature electro-magnet is introduced to electro-magnetic probe to overcome the limitation caused by a curie temperature of permanent magnet. To evaluate performance of the new probe, experimental apparatus equipping annular rotating vessel were also manufactured. The new probe was applied to high temperature LBE up to 480C. As a result, proportional induced voltage to the rotation speed of LBE were clearly observed, where excitation currents of the miniature electro-magnet were 0.2 A or 1 A. In this paper, configuration and performance of the newly developed electro-magnet probe to the high temperature LBE will be presented.
Uchibori, Akihiro; Shiina, Yoshimi*; Watanabe, Akira*; Takata, Takashi*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 12 Pages, 2022/03
An unstructured mesh-based analysis method has been integrated into the sodium-water reaction analysis code, SERAPHIM, in our recent studies. In this study, numerical analysis of an experiment on sodium-water reaction in a tube bundle domain was performed to investigate the effect of the unstructured mesh. The unrealistic behavior appeared in the coarse structured mesh was improved by the unstructured mesh. The numerical result in the case of the unstructured mesh reproduced the peak value of the temperature in the reacting flow.
Mascari, F.*; Bersano, A.*; Woods, B. G.*; Reyes, J. N.*; Welter, K.*; Nakamura, Hideo; D'Auria, F.*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03
Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 13 Pages, 2022/03
Madokoro, Hiroshi; Yamashita, Takuya; Sato, Ikken; Gaus-Liu, X.*; Cron, T.*; Fluhrer, B.*; Stngle, R.*; Wenz, T.*; Vervoortz, M.*; Mizokami, Shinya
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03