Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Rodriguez, D.; Koizumi, Mitsuo; Rossi, F.; Takahashi, Tone
Proceedings of 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022 IEEE NSS MIC RTSD) (Internet), 3 Pages, 2022/12
To, Kentaro; Nakamura, Tatsuya; Sakasai, Kaoru; Yamagishi, Hideshi*
Proceedings of 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022 IEEE NSS MIC RTSD) (Internet), 3 Pages, 2022/11
A real-time data display and storage module was developed for time-of-flight neutron measurement. The module can display real-time experimental data from two-dimensional neutron detector in a two-dimensional image, one-dimensional projection images in X- and Y-axis, and time-of-flight spectra. The module has two modes of operation: standard mode, and simple-display mode. The simple-display mode only displays the experimental results on the monitor and can operate faster than that in the standard mode because the module uses the limited function. Therefore, the simple-display mode is also useful for measurement of high-counting rate neutrons. Operation test using test pulses were performed to confirm the operating speed of the module. The module in standard and simple-display mode could measure the continuous test pulses without counting losses with a frequency of 1.0 and 1.6 MHz, respectively.
Rossi, F.; Koizumi, Mitsuo; Rodriguez, D.; Takahashi, Tone
Proceedings of 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022 IEEE NSS MIC RTSD) (Internet), 2 Pages, 2022/11
Nakamura, Tatsuya; To, Kentaro; Koizumi, Tomokatsu; Kiyanagi, Ryoji; Ohara, Takashi; Ebine, Masumi; Sakasai, Kaoru
Proceedings of 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022 IEEE NSS MIC RTSD) (Internet), 2 Pages, 2022/11
A new thin position-sensitive scintillation neutron detectors have been developed to replace present scintillation detectors in SENJU diffractometer at J-PARC MLF. The SENJU diffractometer originally composed of 37 position-sensitive detectors, where each detector has neutron sensitive area of 256 256 mm with a pixel size of 4
4 mm. To renew some original detectors the new detectors have been developed based on ZnS scintillator and wavelength-shifting fibers technology. The developed replacement detectors were designed with a thin thickness of 12 cm, which is 40% of the original detector. The new detectors have also improved detector performances to the original ones in terms of detection efficiency (
60% for 2-A neutrons) and count uniformity (5-8%). The produced six detector modules have been implemented to the beamline after checking their detector performances in the lab.