Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Impact assessment on local damage to reinforced concrete panels by different projectiles; Impact behavior for projectiles with hemispherical nose shape

Kang, Z.; Nagai, Minoru*; Nishida, Akemi; Tsubota, Haruji; Li, Y.

Proceedings of 25th International Conference on Structural Mechanics in Reactor Technology (SMiRT-25) (USB Flash Drive), 10 Pages, 2019/08

Many empirical formulae have been proposed for evaluating the local damage to reinforced concrete (RC) structures caused by rigid projectile impact. The majority of these formulae aim at impact tests perpendicular to target structures, while few impact tests oblique to the target structure have been studied. The final objective of this study is to propose a new formula for evaluating the local damage to RC structures caused by oblique impact based on past experimental and simulation results. Up to now, we validated the analytical method by comparison with the experimental results and conduct the simulation analysis of impact assessment on RC panel by rigid/soft projectile with flat nose shape using the validated approach. In the part 1 of this paper, the same analytical method is used to simulate the local damage to RC panels caused by oblique impact of rigid/soft projectile with hemispherical nose shape. The results associated with penetration depth of RC structure, energy contribution ratio, etc. are presented.

Journal Articles

Uncertainty of different modeling methods of NPP building subject to seismic ground motions

Choi, B.; Nishida, Akemi; Shiomi, Tadahiko; Muramatsu, Ken*; Takada, Tsuyoshi*

Proceedings of 25th International Conference on Structural Mechanics in Reactor Technology (SMiRT-25) (USB Flash Drive), 8 Pages, 2019/08

In this study, to clarify the influence of the uncertainty of the input seismic ground-motion response of a nuclear power plant (NPP) building, we examined seismic-response analysis results using two different methods of modeling buildings and then compared the results to evaluate effects related to differences between the models. The two methods we used are the three-dimensional (3D) finite-element (FE) model (mainly composed of shell elements) and the conventional sway-rocking (SR) model. Also, using features of the 3D FE model, we analyzed the spatial features of the response results. In this paper, we describe the differences in seismic response obtained by the 3D FE model and the SR model based on simulated input ground motions, and we discuss the influence of the characteristics of the input ground motion on the maximum-response acceleration of the modeled NPP building.

Journal Articles

Development of seismic counter measures against cliff edges for enhancement of comprehensive safety of nuclear power plants, 10; Avoidance of cliff edge for reactor vessel

Yamano, Hidemasa; Nishida, Akemi; Choi, B.; Takada, Tsuyoshi*

Proceedings of 25th International Conference on Structural Mechanics in Reactor Technology (SMiRT-25) (USB Flash Drive), 10 Pages, 2019/08

The objective of this study is to assess cliff edge effects, which are greatly important for nuclear power plants. Through assessments of failure probabilities (fragility), this study examined seismic margins of simulated two kinds of thin- and thick-walled reactor vessels by using response waveforms of the reactor building with/without a seismic isolation system obtained by seismic response analyses. The fragility analyses showed that the seismic isolation technology largely reduced the structural response effects nearly twice as much as that of the non-isolated plant. In focusing on uncertainty of response factor of components, the seismic isolation plant has a significant margin compared to the non-isolated plant even if factors from 0.5 to 2.0 are taken into account. This study concluded that the seismic isolation technology is effective to avoid cliff-edge effects.

Journal Articles

Development of seismic counter measures against cliff edges for enhancement of comprehensive safety of nuclear power plants, 8; Identification and assessment of cliff edges of NPP structural system

Nishida, Akemi; Choi, B.; Yamano, Hidemasa; Itoi, Tatsuya*; Takada, Tsuyoshi*

Proceedings of 25th International Conference on Structural Mechanics in Reactor Technology (SMiRT-25) (USB Flash Drive), 9 Pages, 2019/08

In this research, the seismic safety of a nuclear power plant (NPP) is treated as a system in which the various cliff edge effects are identified and quantified based on the concepts of risk and defense in depth. An aim of this research is to develop a methodology for avoiding these cliff edge effects. In order to examine how the cliff edge state specified and evaluated in the seismic response analysis of the building system, we investigated the seismic isolation mechanism related to physical cliff edges and the modeling effects of the building system related to knowledge oriented cliff edges. In particular, with regard to knowledge-oriented cliff edges, we quantitatively evaluated the uncertainty within the same floor which is evaluated by a three-dimensional building model and tried to reflect it on the fragility evaluation. This paper presents and discusses these results.

Journal Articles

Application of analysis for assembly of integrated components to steel member connections towards seismic safety assessment of plant structures

Nishida, Akemi; Murakami, Takahiro*; Satoda, Akira*; Asano, Yuya*; Guo, Z.*; Matsukawa, Keisuke*; Oshima, Masami*; Nakajima, Norihiro

Proceedings of 25th International Conference on Structural Mechanics in Reactor Technology (SMiRT-25) (USB Flash Drive), 10 Pages, 2019/08

Exhaustive studies on external events that may pose a threat to the structures of nuclear facilities and evaluations of the structural integrities are critical to safety. One of the components that greatly influence the behavior of the plant structure is the connection of structural members. In particular, the modeling of the connections has relied on empirical methods, and been conservatively designed and evaluated by considering them as pinned or rigid connections. Therefore, in this research, we have aimed to develop a connection modeling method that reproduces more realistic behavior by utilizing a three-dimensional model of the connection. As the first step of this research, we planned to determine the stiffness of the connections of steel structural members. The results confirmed that the connection can be regarded as a partially-restrained connection depending on the connection specifications of the structure, and the prospects for realistic stiffness evaluation of the connection were determined.

5 (Records 1-5 displayed on this page)
  • 1