Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Iwamoto, Yosuke; Matsuda, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Nakamoto, Tatsushi*; Yoshida, Makoto*; Ishi, Yoshihiro*; Kuriyama, Yasutoshi*; Uesugi, Tomonori*; Yashima, Hiroshi*; et al.
Proceedings of 61st ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2018) (Internet), p.116 - 121, 2018/07
The radiation damage model in the radiation transport code PHITS has been developed to calculate the basic data of the radiation damage including the energy of the target Primary Knock on Atom (PKA). For the high-energy proton incident reactions, a target PKA created by the secondary particles was more dominant than a target PKA created by the projectile. To validate the radiation damage model in metals irradiated by 100 MeV protons, we developed a proton irradiation device with a Gifford-McMahon cryocooler to cryogenically cool wire samples. By using this device, the defect-induced electrical resistivity changes related to the DPA cross section of copper and aluminum were measured under irradiation with 125 and 200 MeV protons at cryogenic temperature. A comparison of the experimental data with the calculated results indicates that the DPA cross section with defect production efficiencies provide better quantitative descriptions.
Hotchi, Hideaki; J-PARC RCS Beam Commissioning Group
Proceedings of 61st ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2018) (Internet), p.20 - 25, 2018/07
no abstracts in English
Saha, P. K.; Harada, Hiroyuki; Kinsho, Michikazu; Miura, Akihiko; Yoshimoto, Masahiro; Irie, Yoshiro*; Yamane, Isao*; Yoneda, Hitoki*; Michine, Yurina*
Proceedings of 61st ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2018) (Internet), p.422 - 427, 2018/07
Meigo, Shinichiro
Proceedings of 61st ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2018) (Internet), p.99 - 103, 2018/07
As the increase of beam power, beam instruments play an essential role in the Hadron accelerator facility. In J-PARC, the pitting erosion on the mercury target vessel for the spallation neutron source is one of a pivotal issue to operate with the high power of the beam operation. Since the erosion is proportional to the 4th power of the beam current density, the minimization of the peak current density is required. To achieve low current density, the beam-flattening system by nonlinear beam optics in J-PARC, by which the peak density was successfully reduced by 30% than the density with the conventional case optics. Since the ADS requires a very powerful accelerator with the beam power such as 30 MW, a robust beam profile monitor is required, especially for the observation of the beam status on the target continuously. A candidate material for the beam monitor was developed by using heavy-ion of Ar beam to give the damage efficiently.