Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Behavior of high-burnup advanced LWR fuel cladding tubes under LOCA conditions

Narukawa, Takafumi; Amaya, Masaki

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.912 - 921, 2019/09

Journal Articles

Irradiation growth behavior of improved Zr-based alloys for fuel cladding

Amaya, Masaki; Kakiuchi, Kazuo; Mihara, Takeshi

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.1048 - 1056, 2019/09

Journal Articles

Technological development of the particle size adjustment of dry recovered powder

Segawa, Tomoomi; Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Kawaguchi, Koichi; Ishii, Katsunori; Sato, Hisato; Fukasawa, Tomonori*; Fukui, Kunihiro*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.738 - 745, 2019/09

In the MOX fuel fabrication process, the dry grinding technology of mixed oxide pellets have been developed for the effective use of nuclear fuel materials. To develop a technology to control the particle size of dry recovered powder, the performance of the buhrstone mill and the collision plate type jet mill were studied using a simulated powder of particle size distribution about 500 $$mu$$m. We found that the particle size can be controlled at the range of about 250 $$mu$$m or less by both by adjusting the clearance between the grinding wheels of the buhrstone mill, and the clearance and elevation angle of the clarification zone of the the collision plate type jet mill. And furthermore, the collision plate type jet mill is considered to be suitable for particle size control because the operating parameters of the classifier can be finely adjusted.

Journal Articles

Cause analysis of stress corrosion cracking incident due to polyvinyl chloride cable on glove box

Yamada, Yoshikazu; Shibanuma, Kimikazu

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.648 - 654, 2019/09

During a periodic inspection, multiple spot-like nuclear material contamination (maximum 21.7 Bq) was detected at the outer surface of a glove-box (GB) body used to install equipment for fabricating mixed oxide (MOX) fuel at the Japan Atomic Energy Agency. The inspection confirmed a total of 13 cracks passing through the thickness direction of the GB and a bleeding phenomenon was observed on the polyvinyl chloride (PVC) cables in the GB. These cracks were judged as stress corrosion cracking induced by the generation of chlorine gas by irradiation of PVC cables lying against the inner surface of the GB.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 1; Project overview

Yamano, Hidemasa; Takai, Toshihide; Furukawa, Tomohiro; Kikuchi, Shin; Emura, Yuki; Kamiyama, Kenji; Fukuyama, Hiroyuki*; Higashi, Hideo*; Nishi, Tsuyoshi*; Ota, Hiromichi*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.418 - 427, 2019/09

Eutectic reactions between boron carbide (B$$_{4}$$C) and stainless steel (SS) as well as its relocation are one of the key issues in a core disruptive accident (CDA) evaluation in sodium-cooled fast reactors. Since such behaviors have never been simulated in CDA numerical analyses, it is necessary to develop a physical model and incorporate the model into the CDA analysis code. This study is focusing on B$$_{4}$$C-SS eutectic melting experiments, thermophysical property measurement of the eutectic melt, and physical model development for the eutectic melting reaction. The eutectic experiments involve the visualization experiments, eutectic reaction rate experiments and material analyses. The thermophysical properties are measured in the range from solid to liquid state. The physical model is developed for a severe accident computer code based on the measured data of the eutectic reaction rate and the physical properties. This paper describes the project overview and progress of experimental and analytical studies by 2017. Specific results in this paper is boron concentration distributions of solidified B$$_{4}$$C-SS eutectic sample in the eutectic melting experiments, which would be used for the validation of the eutectic physical model implemented into the computer code.

Journal Articles

Behavior of LWR fuels with additives under reactivity-initiated accident conditions

Mihara, Takeshi; Udagawa, Yutaka; Amaya, Masaki; Taniguchi, Yoshinori; Kakiuchi, Kazuo

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.544 - 550, 2019/09

Journal Articles

Behavior of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Udagawa, Yutaka; Mihara, Takeshi; Amaya, Masaki; Kakiuchi, Kazuo

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.551 - 558, 2019/09

Journal Articles

Verification of detailed core-bowing analysis code ARKAS_cellule with IAEA benchmark problems

Ota, Hirokazu*; Ohgama, Kazuya; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.30 - 39, 2019/09

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 4; Effect of B$$_{4}$$C addition on viscosity of austenitic stainless steel in liquid state

Ota, Hiromichi*; Kokubo, Hiroki*; Nishi, Tsuyoshi*; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.858 - 860, 2019/09

A viscosity measurement apparatus has been developed. It is known that the measurement of the viscosity of molten alloy at elevated temperatures is difficult due to the difficulty of handling for low viscosity fluids such as the stainless steel (SS)+B$$_{4}$$C alloy. In this study, the viscosities of the molten nickel (Ni) and stainless steel (SS) were measured by the oscillating crucible method to confirm the performance of the viscosity measurement apparatus as a first step. This method is suitable for high temperature molten alloys. A crucible containing molten metal is suspended, and a rotational oscillation is given to the crucible electromagnetically. The oscillation was damped by the friction of molten metal. The viscosity is determined from the period of oscillation and the logarithmic decrement. The crucible was connected to a mirror block and an inertia disk made of aluminum, and whole of them was suspended by a wire made of platinum-13% rhodium alloy. A laser light is irradiated to the mirror. The reflection light is detected by the photo-detectors, and then, the logarithmic decrement of molten metal is determined. The viscosities of molten nickel and SS melts were measured up to 1823 K. In these results, the measured viscosity values of molten Ni and SS were close to those of the literature values of molten Ni and SS. By the equipment, the viscosity of molten SS+B$$_{4}$$C alloys are measured. The B$$_{4}$$C concentration dependence of the viscosity of molten SS+B$$_{4}$$C alloys is to be clarified.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 3; Effect of B$$_{4}$$C addition on thermophysical properties of austenitic stainless steel in a liquid state

Fukuyama, Hiroyuki*; Higashi, Hideo*; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.853 - 857, 2019/09

Thermophysical properties of molten mixture of 316L stainless steel (SS316L) and control-rod material (B$$_{4}$$C) are necessary for the development of computer simulation codes that describe core degradation mechanisms during severe accidents in nuclear power plants involving sodium-cooled fast reactors. The effect of B$$_{4}$$C addition to SS316L on the solidus and liquidus temperatures were first measured by differential scanning calorimetry. An electromagnetic levitation technique performed in a static magnetic field was used to measure the density, surface tension, normal spectral emissivity, specific heat capacity, and thermal conductivity of molten SS316L and SS316L containing B$$_{4}$$C. The effects of B$$_{4}$$C addition to SS316L on the thermophysical properties were studied up to 10 mass%.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 5; Validation of a multi-phase model for eutectic reaction between molten stainless steel and B$$_{4}$$C

Liu, X.*; Morita, Koji*; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.47 - 51, 2019/09

Investigation of the eutectic reaction in a core disruptive accident of sodium cooled reactor is of importance since reactor criticality will be affected by the change in reactivity after eutectic reaction. In this study, we performed 1st step of validation analysis using a fast reactor safety analysis code, SIMMER-III, with the developed model based on a new series of experiments, where a B$$_{4}$$C pellet was immersed into a molten stainless steel (SS) pool. The simulation results showed the general behavior of eutectic material formation measured in the experiments reasonably. The eutectic reaction consumes solid B$$_{4}$$C and liquid SS, and then the liquid eutectic composition is produced at the early stage of reaction due to the high temperature of molten SS. Movement of the eutectic material in the molten pool leads to the redistribution of boron element. Molten SS pool then freezes to solid SS and movement of eutectic material is stopped by surrounding solid SS. Boron concentration in the pool was measured after molten SS freezes into a solid. Simulation results indicate that boron tends to accumulate in the upper part of the molten pool. This is attributed to the buoyancy force acting on lighter boron in the molten SS pool. A parametric study was also conducted by changing the initial temperature of B$$_{4}$$C pellet and SS to investigate the temperature sensitivity on the eutectic reaction behavior.

Journal Articles

Oxidation of silicon carbide in steam studied by laser heating

Pham, V. H.; Nagae, Yuji; Kurata, Masaki; Furumoto, Kenichiro*; Sato, Hisaki*; Ishibashi, Ryo*; Yamashita, Shinichiro

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.670 - 674, 2019/09

Journal Articles

Estimation of hydrogen gas production at transient criticality in uranyl nitrate solution

Yoshida, Ryoichiro; Yamane, Yuichi; Abe, Hitoshi

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.408 - 414, 2019/09

In a criticality accident, it is known that some kinds of radiolysis gases are generated mainly due to kinetic energy of fission fragments. Hydrogen gas (H$$_{2}$$) is one of them, which is able to initiate explosion. The rate of H$$_{2}$$ generation and its total amount can be estimated from the number of fission per second if its G value is known. In this study, it was tried to estimate G value of hydrogen gas (G(H$$_{2}$$)) by using the H$$_{2}$$ concentration measured as time-series data in Transient Experiment Critical Facility (TRACY) which was carried out by Japan Atomic Energy Agency. There was time lag in the measured H$$_{2}$$ concentration from its generation. To overcome those problems, measured profile of H$$_{2}$$ concentration was reproduced based on a hypothetical model and its total amount was evaluated. Based on the model, the obtained G(H$$_{2}$$) was 1.2.

Journal Articles

Overview of accident-tolerant fuel R&D program in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.206 - 216, 2019/09

After the nuclear accident at Fukushima Daiichi Power Plant, research and development (R&D) program for establishing technical basis of accident-tolerant fuel (ATF) started from 2015 in Japan. Since then, both experimental and analytical studies necessary for designing a new light water reactor (LWR) core with ATF candidate materials are being conducted within the Japanese ATF R&D Consortium for implementing ATF to the existing LWRs, accompanying with various technological developments required. Until now, we have accumulated experimental data of the candidate materials by out-of-pile tests, developed fuel evaluation codes to apply to the ATF candidate materials, and evaluated fuel behavior simulating operational and accidental conditions by the developed codes. In this paper, the R&D progresses of the ATF candidate materials considered in Japan are reviewed based on the information available such as proceedings of international conference and academic papers, providing an overview of ATF program in Japan.

Journal Articles

Benchmark of fuel performance codes for FeCrAl cladding behavior analysis

Pastore, G.*; Gamble, K. A.*; Cherubini, M.*; Giovedi, C.*; Marino, A.*; Yamaji, Akifumi*; Kaji, Yoshiyuki; Van Uffelen, P.*; Veshchunov, M.*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.1038 - 1047, 2019/09

Oxidation-resistant iron-chromium-aluminum (FeCrAl) steels have been proposed for application as cladding materials in light water reactor fuel rods with improved accident tolerance. Within the Coordinated Research Project ACTOF of the International Atomic Energy Agency (IAEA), a fuel performance modeling benchmark for FeCrAl cladding behavior was conducted. During this effort, calculations were performed with various fuel performance codes for a set of fuel rod problems with FeCrAl steel as cladding material, and results were compared to each other.

15 (Records 1-15 displayed on this page)
  • 1