Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ishino, Masahiko; Faenov, A.*; Tanaka, Momoko; Tamotsu, Satoshi*; Pikuz, T.; Hasegawa, Noboru; Nishikino, Masaharu; Inogamov, N.*; Skobelev, I.*; Fortov, V.*; et al.
Proceedings of SPIE, Vol.8849, p.88490F_1 - 88490F_8, 2013/09
Times Cited Count:2 Percentile:72.13(Optics)Kado, Masataka; Kishimoto, Maki; Tamotsu, Satoshi*; Yasuda, Keiko*; Aoyama, Masato*; Shinohara, Kunio*
Proceedings of SPIE, Vol.8849, p.88490C_1 - 88490C_7, 2013/09
Times Cited Count:1 Percentile:54.74(Optics)We have proposed to use a fluorescence microscope to identify the cellular organelles in the images obtained with the soft X-ray microscope observing the same cells with both microscopes. The cells were stained with several fluorescent dyes such as Mito-tracker, Phalloidin, and DAPI and after taking many fluorescence images of cellular organelles the cells were exposed to the flash soft X-rays. The obtained soft X-ray images and fluorescence images of the cells were directly compared and each of the cellular organelles such as mitochondria, actin filaments, and chromosomes in the soft X-ray images was clearly identified. Since the soft X-ray microscope has higher spatial resolution than that of the fluorescence microscope, fine structures of the cellular organelles in the hydrated biological cells were observed for the first time.
Daido, Hiroyuki; Suzuki, Yoji; Kawachi, Tetsuya; Fukuda, Takeshi*; Nakagiri, Toshio; Kaku, Masanori*; Kubodera, Masakazu*; Pirozhkov, A. S.
Proceedings of SPIE, Vol.8849, p.884908_1 - 884908_11, 2013/09
no abstracts in English
Nishikino, Masaharu; Hasegawa, Noboru; Tomita, Takuro*; Minami, Yasuo*; Takei, Ryota*; Baba, Motoyoshi*; Eyama, Tsuyoshi*; Takayoshi, Shodai*; Kawachi, Tetsuya; Hatomi, Daiki*; et al.
Proceedings of SPIE, Vol.8849, p.88490E_1 - 88490E_6, 2013/09
Times Cited Count:2 Percentile:72.13(Optics)We have developed the pump and probe interferometer and reflective imaging technique of the metal surfaces during the femtosecond laser ablation by using the laser-driven soft X-ray laser at the wavelength of 13.9 nm. The pumping laser used for ablation was a Ti: Sapphire laser pulse with the duration of 80 fs pulse at a central wavelength of 795 nm, and had a gaussian spatial profile. By using the X-ray imaging technique, the time resolved image of nano-scaled ablation dynamics of the platinum and the gold pumped by a femtosecond laser pulse was obtained.