Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Taniguchi, Takeshi*; Isobe, Kazuo*; Imada, Shogo*; Eltayeb, M. M.*; Akaji, Yasuaki*; Nakayama, Masataka; Allen, M. F.*; Aronson, E. L.*
Science of the Total Environment, 899, p.165524_1 - 165524_13, 2023/11
Dryland ecosystems experience seasonal cycles of severe drought and moderate precipitation. Desert plants typically have patchy distributions, and many may develop symbiotic relationships with root endophytic microbes to survive under the repeated wet and extremely dry conditions. Although community coalescence has been found in many systems, the colonization by functional microbes and its relationship to seasonal transitions in arid regions are not well understood. Here we examined root endophytic microbial taxa, and their traits in relation to their root colonization, during the dry and wet seasons in a hot desert of the southwestern United States. We used high-throughput DNA sequencing of 16S rRNA and ITS gene profiling of five desert shrubs, and analyzed the seasonal change in endophytic microbial lineages. In summer, Actinobacteria increased, although this was not genus-specific. For fungi, Glomeraceae selectively increased in summer. In winter, Gram-negative bacterial genera, including those capable of nitrogen fixation and plant growth promotion, increased. Neutral model analysis revealed a strong stochastic influence on endophytic bacteria but a weak effect for fungi, especially in summer. The taxa with higher frequency than that predicted by the neutral model shared environmental adaptability and symbiotic traits, whereas the frequency of pathogenic fungi was at or under the predicted value. These results suggest that community assembly of bacteria and fungi is regulated differently. The bacterial community was affected by stochastic and deterministic processes via the bacterial response to drought (response trait) and beneficial effect on plants (effect trait). For fungi, mycorrhizal fungi were selected by plants in summer. The regulation of beneficial microbes by plants in both dry and wet seasons suggests the presence of plant-soil positive feedback in this natural desert ecosystem.
Sugita, Tsuyoshi; Mori, Masanobu*; Shimoyama, Iwao
Applied Clay Science, 243, p.107074_1 - 107074_8, 2023/10
We have investigated the conversion of biotite, a subgroup of clay minerals, into photocatalysts by heat treatment with CaCl. The reaction products obtained after heat treatment were examined in terms of composition, structure, and photocatalytic activity against Cr
and salicylic acid (SA). When mixtures of biotite and CaCl
were heated at temperatures up to 600
C, the biotite crystal structure was retained, whereas a phase transformation from biotite to octahedral wadalite crystals occurred upon heating to 700
C. The photocatalytic reduction rate of Cr
per unit surface area and the photocatalytic degradation efficiency of SA increased significantly with increasing treatment temperature. Even the samples that retained the biotite structure after heat treatment displayed some photocatalytic activity, suggesting that this method may also be suitable for preparing photocatalysts from other common natural materials.
Yamashita, Susumu; Sato, Takumi; Nagae, Yuji; Kurata, Masaki; Yoshida, Hiroyuki
Journal of Nuclear Science and Technology, 60(9), p.1029 - 1045, 2023/09
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)Konno, Chikara; Ota, Masayuki*; Kwon, Saerom*; Onishi, Seiki*; Yamano, Naoki*; Sato, Satoshi*
Journal of Nuclear Science and Technology, 60(9), p.1046 - 1069, 2023/09
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)JENDL-5 was validated from a viewpoint of shielding applications under the Shielding Integral Test Working Group of the JENDL Committee. The following benchmark experiments were selected: JAEA/FNS in-situ experiments, Osaka Univ./OKTAVIAN TOF experiments, ORNL/JASPER sodium experiments, NIST iron experiment and QST/TIARA experiments. These experiments were analyzed with MCNP and nuclear data libraries (JENDL-5, JENDL-4.0 or JENDL-4.0/HE, ENDF/B-VIII.0 and JEFF-3.3). The analysis results demonstrate that JENDL-5 is comparable to or better than JENDL-4.0 or JENDL-4.0/HE, ENDF/B-VIII.0 and JEFF-3.3.
Nakamura, Shoji; Shibahara, Yuji*; Kimura, Atsushi; Endo, Shunsuke; Shizuma, Toshiyuki*
Journal of Nuclear Science and Technology, 60(9), p.1133 - 1142, 2023/09
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)In recent years, research has been advanced on lead-cooled fast reactors and accelerator drive systems, and it is required to improve the accuracy of the neutron capture cross section of Pb isotopes. Although Pb has a small natural abundance, it is of importance because it produces the long-lived radionuclide
Pb (17.3 million years) by neutron capture reaction. However, it is difficult to measure its cross section by a conventional activation method using a nuclear reactor because the induced radioactivity of
Pb is weak. Hence, the cross-section measurement was performed by applying mass spectrometry. This presentation gives the details of the experiment and the results obtained in the neutron capture cross-section measurement of
Pb using mass spectroscopy.
Suzuki, Hideya*; Ban, Yasutoshi
Analytical Sciences, 39(8), p.1341 - 1348, 2023/08
Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)The Japan Atomic Energy Agency (JAEA) has proposed the Solvent Extraction from Liquid waste using Extractants of CHON-type for Transmutation (SELECT) process by solvent extraction as a new separation technology to recover minor actinides (MA) from high-level liquid waste (HLLW) produced by spent fuel reprocessing. The MA separation in the SELECT process comprises the batch recovery of MA and rare earths (RE) from HLLW, MA/RE separation, and Am/Cm separation. Three highly practical extractants are used in the MA separation. Furthermore, this flow configuration facilitates the preparation of nitric acid concentrations in the aqueous phase. However, the separation factor between Cm and Nd in the MA/RE separation is small ( = 2.5), requiring many extraction stages for continuous extraction in a mixer-settler. Therefore, this study investigated the separation of only Am from an aqueous nitric acid solution containing MA (Am and Cm) and RE using an organic phase mixed with two extractants alkyl diamideamine with 2-ethylhexyl alkyl chains (ADAAM(EH)) and hexa-n-octylnitrilotriacetamide (HONTA) used in the SELECT process. Under high-concentration nitric acid conditions, Am and La, Ce, Pr, Nd (light lanthanides) were extracted in the ADAAM(EH) + HONTA mixed solvent, whereas Cm, medium, and heavy lanthanides, and Y were partitioned in the aqueous phase. Subsequently, only light lanthanides could be back extracted from the ADAAM(EH) + HONTA mixture solvent containing Am and light lanthanides in low nitric acid concentrations. Furthermore, Am could be easily stripped with 0.2 M or 5 M nitric acid. This method does not require the mutual separation of Cm and Nd, which have low separation factors. Am can be efficiently separated by one extraction and two back-extractions, reducing the number of steps in the SELECT process.
Hata, Kuniki; Hanawa, Satoshi; Chimi, Yasuhiro; Uchida, Shunsuke; Lister, D. H.*
Journal of Nuclear Science and Technology, 60(8), p.867 - 880, 2023/08
Times Cited Count:2 Percentile:49.42(Nuclear Science & Technology)One of the major subjects for evaluating the corrosive conditions in the PWR primary coolant was to determine the optimal hydrogen concentration for mitigating PWSCC without any adverse effects on major structural materials. As suitable procedures for evaluating the corrosive conditions in PWR primary coolant, a couple of procedures, i.e., water radiolysis and ECP analyses, were proposed. The previous article showed the radiolysis calculation in the PWR primary coolant, which was followed by an ECP study here. The ECP analysis, a couple of a mixed potential model and an oxide layer growth model, was developed originally for BWR conditions, which was extended to PWR conditions with adding Li (Na
) and H
effects on the anodic polarization curves. As a result of comparison of the calculated results with INCA in-pile-loop experiment data as well as other experimental data, it was confirmed that the ECPs calculated with the coupled analyses agreed with the measured within
100mV discrepancies.
Iwamoto, Nobuyuki; Kosako, Kazuaki*; Fukahori, Tokio
Journal of Nuclear Science and Technology, 60(8), p.911 - 922, 2023/08
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)Okagaki, Yuria; Shibamoto, Yasuteru; Wada, Yuki; Abe, Satoshi; Hibiki, Takashi*
Journal of Nuclear Science and Technology, 60(8), p.955 - 968, 2023/08
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)Terada, Hiroaki; Nagai, Haruyasu; Kadowaki, Masanao; Tsuzuki, Katsunori
Journal of Nuclear Science and Technology, 60(8), p.980 - 1001, 2023/08
Times Cited Count:1 Percentile:89.37(Nuclear Science & Technology)It is essential to establish a method for reconstructing the source term and spatiotemporal distribution of radionuclides released into the atmosphere due to a nuclear accident for emergency countermeasures. We examined the dependency of a source term estimation method based on Bayesian inference using atmospheric dispersion simulation and environmental monitoring data on the availability of various monitoring data. Additionally, we examined the applicability of this method to a real-time estimation conducted immediately after an accident. A sensitivity analysis of the estimated source term during the Fukushima Daiichi Nuclear Power Station (FDNPS) accident for combinations of various monitoring data indicated that using monitoring data with a high temporal and spatial resolution and the concurrent use of air concentration and surface deposition data is effective for accurate estimation. A real-time source term estimation experiment assuming the situation of monitoring data acquisition during the FDNPS accident revealed that this method could provide the necessary source term for grasping the overview of surface contamination in the early phase and evaluating the approximate accident scale. If the immediate online acquisition of monitoring data and regular operation of an atmospheric dispersion simulation are established, this method can provide the source term in near-real time.
Sato, Yuki; Terasaka, Yuta
Journal of Nuclear Science and Technology, 60(8), p.1013 - 1026, 2023/08
Times Cited Count:1 Percentile:89.37(Nuclear Science & Technology)Okita, Shoichiro; Fukaya, Yuji; Sakon, Atsushi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Unesaki, Hironobu*
Nuclear Science and Engineering, 197(8), p.2251 - 2257, 2023/08
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Li, C.-Y.; Wang, K.*; Uchibori, Akihiro; Okano, Yasushi; Pellegrini, M.*; Erkan, N.*; Takata, Takashi*; Okamoto, Koji*
Applied Sciences (Internet), 13(13), p.7705_1 - 7705_29, 2023/07
Times Cited Count:0Saito, Takumi*; Motokawa, Ryuhei; Okubo, Takahiro*; Miura, Daisuke*; Kumada, Takayuki
Environmental Science & Technology, 57(26), p.9802 - 9810, 2023/07
Times Cited Count:0 Percentile:0.01(Engineering, Environmental)Minari, Eriko*; Kabasawa, Satsuki; Mihara, Morihiro; Makino, Hitoshi; Asano, Hidekazu*; Nakase, Masahiko*; Takeshita, Kenji*
Journal of Nuclear Science and Technology, 60(7), p.793 - 803, 2023/07
Times Cited Count:1 Percentile:49.42(Nuclear Science & Technology)Suzuki, Seiya; Arai, Yoichi; Okamura, Nobuo; Watanabe, Masayuki
Journal of Nuclear Science and Technology, 60(7), p.839 - 848, 2023/07
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)The fuel debris, consisting of nuclear fuel materials and reactor structural materials, generated in the accident of Fukushima Daiichi Nuclear Power Plant can become deteriorated like rocks under the changes of environmental temperature. Although the fuel debris have been cooled by water for 10 years, they are affected by seasonal and/or day-and-night temperature changes. Therefore, in evaluating the aging behavior of the fuel debris, it is essential to consider the changes in environmental temperature. Assuming that the fuel debris are deteriorated, radioactive substances that have recently undergone micronization could be eluted into the cooling water, and such condition may affect defueling methods. We focused on the effect of repeated changes in environmental temperature on the occurrence of cracks, and an accelerated test using simulated fuel debris was carried out. The length of the crack increases with increasing number of heat cycle; therefore, the fuel debris become brittle by stress caused by thermal expansion and contraction. In conclusion, it was confirmed that the mechanical deterioration of the fuel debris is similar to that of rocks or minerals, and it became possible to predict changes in the length of the crack in the simulated fuel debris and environmental model.
Hidaka, Akihide; Kawashima, Shigeto*; Kajino, Mizuo*
Journal of Nuclear Science and Technology, 60(7), p.743 - 758, 2023/07
Times Cited Count:2 Percentile:89.37(Nuclear Science & Technology)An accurate estimation of radionuclides released during the Fukushima accident is essential. Therefore, authors investigated Te release using the Unit emission-regression estimation method, in which the deposition distribution is weighted based on the hourly deposition obtained from mesoscale meteorological model calculations assuming Unit emissions. The previous study focused on confirming the applicability of this method. Subsequent examination revealed that if any part of the time when a release have occurred is missing from the estimated release period, the entire source term calculation will be distorted. Therefore, this study performed the recalculation by extending the estimation period to cover all major releases. Consequently, unspecified release events were clarified, and their correspondence to in-core events was confirmed. The Te release caused by Zr cladding complete oxidation can explain the regional dependence of the
Te/
Cs ratio in the soil contamination map.
Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Rovira Leveroni, G.; Iwamoto, Osamu; Iwamoto, Nobuyuki; Harada, Hideo; Katabuchi, Tatsuya*; Terada, Kazushi*; Hori, Junichi*; et al.
Journal of Nuclear Science and Technology, 60(6), p.678 - 696, 2023/06
Times Cited Count:2 Percentile:72.55(Nuclear Science & Technology)Okamura, Tomohiro*; Katano, Ryota; Oizumi, Akito; Nishihara, Kenji; Nakase, Masahiko*; Asano, Hidekazu*; Takeshita, Kenji*
Journal of Nuclear Science and Technology, 60(6), p.632 - 641, 2023/06
Times Cited Count:1 Percentile:49.42(Nuclear Science & Technology)The Okamura explicit method (OEM) for depletion calculation was developed by modifying the matrix exponential method for dynamic nuclear fuel cycle simulation. The OEM suppressed the divergence of the calculation for short half-life nuclides, even for long time steps. The computational cost of the OEM was small, equivalent to the Euler method, and it maintained sufficient accuracy for the fuel cycle simulation.
Shirasu, Noriko; Sato, Takumi; Suzuki, Akihiro*; Nagae, Yuji; Kurata, Masaki
Journal of Nuclear Science and Technology, 60(6), p.697 - 714, 2023/06
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)Interaction tests between UO and Zr were performed at precisely controlled high temperatures between 1840 and 2000
C to understand the interaction mechanism in detail. A Zr rod was inserted in a UO
crucible and then heat-treated at a fixed temperature in Ar-gas flow for 10 min. After heating in the range of 1890 to 1930
C, the Zr rod was deformed to a round shape, in which the post-analysis detected the significant diffusion of U into the Zr region and the formation of a dominant
-Zr(O) matrix and a small amount of U-Zr-O precipitates. The abrupt progress of liquefaction was observed in the sample heated at around 1940
C or higher. The higher oxygen concentration in the
-Zr(O) matrix suppressed the liquefaction progress, due to the variation in the equilibrium state. The U-Zr-O melt formation progressed by the selective dissolution of Zr from the matrix, and the selective diffusion of U could occur via the U-Zr-O melt.