Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shinotsuka, Hiroshi*; Nagata, Kenji*; Yoshikawa, Hideki*; Ogawa, Shuichi*; Yoshigoe, Akitaka
Applied Surface Science, 685, p.162001_1 - 162001_11, 2025/03
Times Cited Count:1 Percentile:0.00(Chemistry, Physical)Silicon (Si) 2p photoelectron spectra of thermally oxidized Si(001) surfaces were analyzed using Bayesian estimation, a type of mathematical statistical processing, considering spin-orbit interactions. The accuracy of the estimation of fitting parameters and the model selection of the number of peaks were discussed. The spectral analysis was performed without any prior information on the positions of other Si peaks, except for the prominent bulk Si peak, and without using chemical-state assumptions. Our method completely verified previous findings on the surface species and the changes in peaks due to oxidation-induced strain as oxidation progressed.
Fukaya, Yuki
Vacuum and Surface Science, 68(2), p.91 - 96, 2025/02
Yoshigoe, Akitaka; Tsuda, Yasutaka; Kobata, Masaaki; Okane, Tetsuo; Satou, Yukihiko; Okochi, Takuo*
e-Journal of Surface Science and Nanotechnology (Internet), 23(1), p.16 - 21, 2025/02
Hayashida, Koki*; Tsuda, Yasutaka; Murase, Natsumi*; Yamada, Takashi*; Yoshigoe, Akitaka; Dio, W. A.*; Okada, Michio*
Applied Surface Science, 669, p.160475_1 - 160475_6, 2024/10
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Kamiya, Junichiro; Abe, Kazuhide; Fujimori, Shinichi; Fukuda, Tatsuo; Kobata, Masaaki; Morohashi, Yuko; Tsuda, Yasutaka; Yamada, Ippei; Yoshigoe, Akitaka
e-Journal of Surface Science and Nanotechnology (Internet), 22(4), p.316 - 326, 2024/08
The activation and deterioration mechanisms of the Ti-Zr-V non-evaporable getter (NEG) coating have been investigated. Operando analysis of the surface chemical composition change of the Ti-Zr-V coating was performed by the synchrotron radiation photoelectron spectroscopy (SRPES) during the process of raising the sample temperature to 250C, corresponding to the activation process of NEG coating. The surface oxidation process was also characterized by the SRPES during the injection of O_2 gas into the chamber while keeping the sample temperature at 250
C, corresponding to the deterioration process of NEG coating, i.e. surface oxidation and oxygen diffusion to the coating interior. The depth profile of the oxidized sample was measured with X-ray photoelectron spectroscopy. The results shows, in the activation process, the surface Zr gets the oxygen from the oxides of Ti and V at the first stage, resulting in the metallic Ti and V on the surface, and the oxygen of the Zr-oxide and/or Zr sub-oxides diffuse to the interior of the coating in the continuous temperature rise, resulting in the metallic Zr on the surface. It is further suggested that the deterioration of the Ti-Zr-V NEG coating means the Zr and secondary Ti are oxidized deep into the coating, resulting in the restriction of the oxygen migration from the NEG compositions on the surface and consequently the lack of surface metallization.
Kamiya, Junichiro; Oi, Motoki; Kobayashi, Fuminori; Sakai, Kenji; Yamada, Ippei
Vacuum and Surface Science, 67(4), p.186 - 191, 2024/04
This report describes the usage, specification, troubles and countermeasures of dry pumps in the Japan Proton Accelerator Research Complex (J-PARC). In J-PARC, while dry scroll pumps (DSP) are widely used, many are being replaced with roots pumps due to frequent maintenance and troubles of DSP. Some of the facilities use roots pumps with special specifications, such as radiation-resistant specifications, separate power supply, and with diaphragm type, etc. Although some problems have occurred with both DSPs and roots pumps, they have been addressed by revising maintenance methods and improving parts, contributing to stable operation for users.
Makino, Takamasa*; Tsuda, Yasutaka; Yoshigoe, Akitaka; Dio, W. A.*; Okada, Michio*
Applied Surface Science, 642, p.158568_1 - 158568_6, 2024/01
Times Cited Count:3 Percentile:39.87(Chemistry, Physical)Yoshida, Hidekazu*; Yamamoto, Koshi*; Asahara, Yoshihiro*; Maruyama, Ippei*; Karukaya, Koichi*; Saito, Akane*; Matsui, Hiroya; Mochizuki, Akihito; Katsuta, Nagayoshi*; Metcalfe, R.*
Powering the Energy Transition through Subsurface Collaboration; Proceedings of the 1st Energy Geoscience Conference (Energy Geoscience Conference Series, 1), 20 Pages, 2024/00
A capability to permanently seal fluid flow-paths in bedrock, such as natural faults/fractures, and damaged zones around boreholes/excavations, is needed to ensure the long-term safety and effectiveness of many underground activities. Cementitious materials are commonly used as seals, however these materials unavoidably undergo physical and chemical degradation, therefore potentially decreasing seal durability. In order to solve these problems, a more durable sealing method using concretion-forming resin has been developed by learning from natural calcite (CaCO) concretion formation. The sealing capability of resin was tested by
experiments on bedrock flow-paths in an underground research laboratory (URL), Hokkaido, Japan. The results showed a decrease the permeability rapidly down to 1/1,000 of the initial permeability due to calcite precipitation over a period of one year. During the experiment inland earthquakes occurred with foci below the URL (depths 2-7 km and maximum magnitude 5.4). Due to the earthquakes the hydraulic conductivities of the flow-paths sealed initially by concretion-forming resin increased. However, these flow-paths subsequently resealed rapidly, and within a few months recovered the same hydraulic conductivities as before the earthquakes. This new technique for rapidly producing long-lasting seals against fluid flow through rocks will be applicable to many kinds of underground activities.
Yasuda, Satoshi; Dio, W. A.*; Fukutani, Katsuyuki
Vacuum and Surface Science, 66(9), p.514 - 519, 2023/09
Monolayer graphene, representative of atomically thin crystals, has recently shown unexpectedly high proton and deuteron permeability under ambient conditions. It also permeates (filters) hydrogen (deuterium) isotope ion with high selectivity. These results suggest possible ways of developing novel and efficient hydrogen isotope gas enrichment techniques for manufacturing silicon semiconductors, optical fibers, drug development, nuclear fusion, and other related applications. And yet, despite its importance, experimental studies remain scarce and the separation mechanism contentious. Here, we introduce our recent findings on how quantum tunneling of hydrons through graphene could account for the high hydron selectivity of graphene.
Terasawa, Tomoo; Matsunaga, Kazuya*; Hayashi, Naoki*; Ito, Takahiro*; Tanaka, Shinichiro*; Yasuda, Satoshi; Asaoka, Hidehito
Vacuum and Surface Science, 66(9), p.525 - 530, 2023/09
As Au (001) surfaces exhibit a quasi-one-dimensional corrugated structure, Hex-Au(001), its periodicity was predicted to change the electronic structure of graphene when graphene was grown on this surface. Furthermore, the hybridization between graphene and Au is known to introduce bandgap and spin polarization into graphene. Here, we report angle-resolved photoemission spectroscopy and density functional theory calculation of graphene on a Hex-Au(001) surface. A bandgap of 0.2 eV in the graphene Dirac cone was observed at the crossing point of the graphene Dirac cone and Au 6sp bands, indicating that the origin of the bandgap formation was the hybridization between the graphene Dirac cone and Au 6sp band. We discussed the hybridization mechanism and anticipated spin injection into the graphene Dirac cone.
Yamamoto, Kazami; Ogiwara, Norio*; Kuramochi, Masaya*
e-Journal of Surface Science and Nanotechnology (Internet), 21(4), p.359 - 364, 2023/07
In recent years, durable target is required according to increase of the beam power. To solve this problem, a liquid film was formed in vacuum and tested it as a target. An ethanol and a mercury were selected as liquid target materials, and we investigated whether the liquid sheet could be formed stably in a vacuum and how about the vacuum pressure. As a result, it was confirmed that the liquid films were stably formed in both case and the pressures with the films were about the vapor pressure of the materials.
Kamiya, Junichiro; Takano, Kazuhiro*; Wada, Kaoru; Yanagibashi, Toru*
e-Journal of Surface Science and Nanotechnology (Internet), 21(3), p.144 - 153, 2023/06
no abstracts in English
Kamiya, Junichiro; Nii, Keisuke*; Kabumoto, Hiroshi; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; Matsuda, Makoto; Moriya, Katsuhiro; Ida, Yoshiaki*; et al.
e-Journal of Surface Science and Nanotechnology (Internet), 21(4), p.344 - 349, 2023/05
no abstracts in English
Ogawa, Shuichi*; Tsuda, Yasutaka; Sakamoto, Tetsuya*; Okigawa, Yuki*; Masuzawa, Tomoaki*; Yoshigoe, Akitaka; Abukawa, Tadashi*; Yamada, Takatoshi*
Applied Surface Science, 605, p.154748_1 - 154748_6, 2022/12
Times Cited Count:7 Percentile:48.96(Chemistry, Physical)Immersion of graphene in KOH solution improves its mobility on SiO/Si wafers. This is thought to be due to electron doping by modification with K atoms, but the K atom concentration C
in the graphene has not been clarified yet. In this study, the C
was determined by XPS analysis using high-brilliance synchrotron radiation. The time evolution of C
was determined by real-time observation, and the C
before irradiation of synchrotron radiation was estimated to be 0.94%. The C 1s spectrum shifted to the low binding energy side with the desorption of K atoms. This indicates that the electron doping concentration into graphene is decreasing, and it is experimentally confirmed that K atoms inject electrons into graphene.
Katsube, Daiki*; Ono, Shinya*; Inami, Eiichi*; Yoshigoe, Akitaka; Abe, Masayuki*
Vacuum and Surface Science, 65(11), p.526 - 530, 2022/11
The oxidation of oxygen vacancies at the surface of anatase TiO (001) was investigated by synchrotron radiation photoelectron spectroscopy and supersonic O
beam (SSMB). The oxygen vacancies at the top surface and subsurface could be eliminated by the supply of hyperthermal oxygen molecules. Oxygen vacancies are present on the surface of anatase TiO
(001) when it is untreated before transfer to a vacuum chamber. These vacancies, which are stable in the ambient condition, could also be effectively eliminated by using oxygen SSMB. This result is promising as a surface processing for various functional oxides.
Tsuda, Yasutaka; Yoshigoe, Akitaka; Ogawa, Shuichi*; Sakamoto, Tetsuya*; Takakuwa, Yuji*
e-Journal of Surface Science and Nanotechnology (Internet), 21(1), p.30 - 39, 2022/11
Kawamura, Takaaki*; Fukaya, Yuki; Fukutani, Katsuyuki
Surface Science, 722, p.122098_1 - 122098_8, 2022/08
Times Cited Count:1 Percentile:6.72(Chemistry, Physical)no abstracts in English
Terasawa, Tomoo; Fukutani, Katsuyuki; Yasuda, Satoshi; Asaoka, Hidehito
e-Journal of Surface Science and Nanotechnology (Internet), 20(4), p.196 - 201, 2022/07
Graphene is a perfect impermeable membrane for gases but permeable to hydrogen ions. Hydrogen ion permeation shows the isotope effect, i.e., deuteron is slower than proton when permeating graphene. However, the permeation mechanism and the origin of the isotope effect are still unclear. Here, we propose a strategy to discuss the hydrogen ion permeation mechanism of graphene by developing an ion source with ultraslow, monochromatic, and mass-selected hydrogen ion beam. We employed a hemispherical monochromator and a Wien filter for the ion source to achieve the energy and mass resolutions of 0.39 eV and 1 atomic mass unit, respectively. The energetically sharp ion beam is expected to allow us to directly measure the permeability of graphene with high accuracy.
Sekiguchi, Tetsuhiro; Yokoyama, Keiichi; Yaita, Tsuyoshi
e-Journal of Surface Science and Nanotechnology (Internet), 20(3), p.186 - 195, 2022/07
Cesium-135 having long life, 2.3 million y, that is contained in nuclear wastes may cause long-term pollution. Technology of isotopic separation of such long lived nuclide is indispensable not only for its volume reduction but also annihilation by nuclear transmutation. The recovery of atomic Cs from molecular CsI is mandatory. We have investigated fullerene C as a potential absorber for Cs. Angle-resolved X-ray photoelectron spectroscopy, AR-XPS has been used to analyze the depth concentration distribution of Cs. Experiments were performed at soft X-ray beamline BL27A at KEK PF facility. We report on the annealing effect after deposition of Cs and the effect of heating substrate during deposition. For Cs/C
sample, the intensity ratio of Cs-3d/C-1s increased in double at the high temperature. This suggests that Cs atoms remain in the material at high temperatures. On the other hand, for CsI/C
, the intensity ratio does not change much by elevating temperatures.
Tang, J.*; Seo, O.*; Rivera Rocabado, D. S.*; Koitaya, Takanori*; Yamamoto, Susumu*; Namba, Yusuke*; Song, C.*; Kim, J.*; Yoshigoe, Akitaka; Koyama, Michihisa*; et al.
Applied Surface Science, 587, p.152797_1 - 152797_8, 2022/06
Times Cited Count:11 Percentile:67.59(Chemistry, Physical)The hydrogen absorption and diffusion mechanisms on cube-shaped Pd nanoparticles (NPs) which are important hydrogen-storage materials were studied using X-ray photoelectron spectroscopy and DFT calculations. In the surface region, hydrogen absorption showed almost similar behavior regardless of the NPs size. It was found that the octahedral sites are more favorable than the tetrahedral sites for hydrogen occupation. We also clarified that the hydrogen atoms absorbing on the smaller-sized Pd NPs diffuse to the subsurface more actively because of the weakened Pd-H bond by the surface disordering, which plays an important role in hydrogen adsorption at a low H pressure.