Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ishigaki, Masahiro; Abe, Satoshi; Shibamoto, Yasuteru; Yonomoto, Taisuke
Nuclear Engineering and Design, 367, p.110790_1 - 110790_15, 2020/10
Times Cited Count:0 Percentile:100(Nuclear Science & Technology)no abstracts in English
Hashidate, Ryuta; Kato, Shoichi; Onizawa, Takashi; Wakai, Takashi; Kasahara, Naoto*
Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 9 Pages, 2020/08
Although it is very essential to clarify how the structure collapses under the severe accident conditions, the failure mechanisms in excessive high temperatures are not clarified. However, it is very difficult and expensive to perform structural tests using actual structural materials. Therefore, we propose to use lead alloys instead of actual structural materials. For demonstration of analogy between the failure mechanisms of lead alloys structure at low temperature and those of the actual structures at high temperature, numerical analyses are required. Although the authors proposed inelastic constitutive equations for numerical analyses in 2019, the equations could not successfully express because of large variations observed in the material tests of the lead alloy. In this study, we propose the improved inelastic constitutive equations of the lead alloy on the basis of the material test results used by aged alloy which can stabilized the material characteristic.
Abe, Yuta; Yamashita, Takuya; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro
Journal of Nuclear Engineering and Radiation Science, 6(2), p.021113_1 - 021113_9, 2020/04
Hashidate, Ryuta; Onizawa, Takashi; Wakai, Takashi; Kasahara, Naoto*
Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 10 Pages, 2019/07
Under the severe accident conditions, structural materials of nuclear power plants are subjected to excessive high temperature. Although it is very essential to clarify how the structure collapses under the severe accident conditions, the failure mechanisms in such high temperatures are not clarified. However, it is very difficult and expensive to perform structural tests using actual structural materials. Therefore, we propose to use lead alloys instead of actual structural materials. Because the strength of lead alloys is much poorer than that of the actual structural materials, failure can be observed at low temperature and by small load. For demonstration of analogy between the failure mechanisms of lead alloys structure at low temperature and those of the actual structures at high temperature, numerical analyses are required. So, we confirm the material characteristics of lead alloys and develop inelastic constitutive equations of lead alloy required for finite element analyses.
Nishimura, Satoshi*; Satake, Masaaki*; Nishi, Yoshihisa*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05
In this study, accident progression analyses in the SFP were performed to investigate cooling effects of the SFP spray and an alternate water injection in the loss-of-pool water accident with MAAP ver. 5.05 beta. Fuel cladding oxidation model which was created by JAEA based on their experimental data was selected and applied in the present calculations. In case of an assessment of SFP spray effects, decay heat, spray fraction going into the fuel assembly, spray droplet diameter, spray start time were selected as analytical parameters. When the SFP spray of 12.5 kg/s (200 GPM) starts 4 hours after the onset of the accident against the spent fuels with 4 months cooling and if the spray fraction going into the fuel assembly is greater than 30%, the maximum cladding temperature can be maintained under 727C (1000 K), resulting in avoiding the cladding failure.
Morita, Yoshihiro*; Suzuki, Hiroaki*; Naito, Masanori*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05
In this study, the SAMPSON code was modified to evaluate severe accidents in a spent fuel pool (SFP). Not only the SFP but also upper spaces of the SFP, walls of the reactor building, and the blowout panel were included. Air oxidation models obtained by the Zircaroy-4 cladding (ANL model) and the Zircaroy-2 cladding (JAEA model) were included in the modified SAMPSON code. Experiments done by Sandia National Laboratory using simulated fuel assemblies equivalent to those of an actual BWR plant were analyzed by the modified SAMPSON code to confirm the functions for analysis of the severe SFP accidents.
Suzuki, Hiroaki*; Morita, Yoshihiro*; Naito, Masanori*; Nemoto, Yoshiyuki; Nagatake, Taku; Kaji, Yoshiyuki
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 7 Pages, 2019/05
In this paper, modification of the SAMPSON code was carried out to enable the analysis of spray cooling. The SAMPSON analysis of a spray cooling experiment was performed to confirm reproducibility of spray cooling behavior of fuel claddings. The modified SAMPSON code was applied to a hypothetical loss-of-coolant accident analysis of the SFP. Effectiveness of spray cooling on cladding temperature behavior was investigated. The SAMPSON analysis showed that spraying from the top of the SFP was effective for cooling the fuel assemblies exposed to the gas phase.
Someya, Takayuki*; Chitose, Hiromasa*; Watanabe, Satoshi*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05
In this study, CFD analysis has been conducted for the assessment of spent fuel integrity in large LOCA event and the maximum temperature of spent fuel assemblies has been evaluated. Then, it has been compared with the result of the simple assessment method. As a case study, additional CFD analysis has been conducted, where water level in SFP decreases to the Bottom of Active Fuel (BAF) due to boil-off. Since this scenario might be more severe than large LOCA scenario, the number of spent fuel assemblies, their decay heat and loading pattern to maintain spent fuel integrity are investigated.
Shirasu, Noriko; Suzuki, Akihiro*; Nagae, Yuji; Kurata, Masaki
Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 4 Pages, 2019/05
High temperature interaction tests between UO and Zr were performed at around 2173 K, to make clear the UO
/
-Zr(O) interaction and the mechanism of degradation, for developing the improved models for advanced severe accident analysis codes. A Zr plate was inserted in a UO
crucible, and heat treated at 2173 K in stream of Ar. After the heat-treatment, the samples were subjected to surface microanalysis. The middle region of Zr sample shows streak-like structures which are extended towered the top. It is confirmed that the streak-like structures were mainly consist of U from the EDX results, and the structures revealed that the U-rich phase was liquid during the heat-treatment. It seems that the U-rich liquid grew selectively toward the area where the oxygen concentration was low.
Nakamura, Hideo
Nippon Genshiryoku Gakkai-Shi, 61(4), p.270 - 272, 2019/04
no abstracts in English
Hidaka, Akihide
Genshiryoku No Ima To Ashita, p.264 - 265, 2019/03
no abstracts in English
Fukano, Yoshitaka
Journal of Nuclear Engineering and Radiation Science, 5(1), p.011001_1 - 011001_13, 2019/01
Local subassembly faults (LFs) have been considered to be of greater importance in safety evaluation in sodium-cooled fast reactors (SFRs) because fuel elements were generally densely arranged in the subassemblies (SAs) in this type of reactors, and because power densities were higher compared with those in light water reactors. A hypothetical total instantaneous flow blockage at the coolant inlet of an SA (HTIB) gives most severe consequences among a variety of LFs. Although an evaluation on the consequences of HTIB using SAS4A code was performed in the past study, SAS4A code was further developed by implementing analytical model of power control system in this study. An evaluation on the consequences of HTIB in an SFR by this developed SAS4A code clarified that the conclusion in the past study was almost same as that in this study. Furthermore SAS4A code was newly validated using four in-pile experiments which simulated HTIB events. The validity of SAS4A application to safety evaluation on the consequence of HTIB was further enhanced in this study. Thus the methodology of HTIB evaluation was established in this study together with the past study and is applicable to HTIB evaluations in other SFRs.
Shiotsu, Hiroyuki; Ito, Hiroto*; Ishikawa, Jun; Sugiyama, Tomoyuki; Maruyama, Yu
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11
Ito, Hiroto*; Shiotsu, Hiroyuki; Tanaka, Yoichi*; Nishihara, Satomichi*; Sugiyama, Tomoyuki; Maruyama, Yu
JAEA-Data/Code 2018-012, 42 Pages, 2018/10
Chemical composition of fission products transported in nuclear facilities in severe accidents is controlled by slower chemical reaction rates, therefore, it could be different from that evaluated on the chemical equilibrium assumption. Hence, it is necessary to evaluate the chemical composition with reaction kinetics. On the other hand, databases applicable to the analysis of nuclear facilities have not been constructed because knowledge of reaction rates of complex chemical reactions in severe accidents is currently limited. Accordingly, we have developed the CHEMKEq code based on a partial mixed model with chemical equilibrium and reaction kinetics to decrease uncertainties of the chemical composition caused by the reaction rate. The CHEMKEq code, under mass conservation law, firstly evaluates chemical species obeying the chemical equilibrium model, and then, relatively slow reactions are solved by the reaction kinetics model. Moreover, the CHEMKEq code has a multiplicity of use in evaluations of chemical composition because general chemical equilibrium and reaction kinetics models are also available and databases required to calculation are external file formats. This report is the user's guide of the CHEMKEq code, showing models, solution methods, structure of the code and calculation examples. And information to run the CHEMKEq code is summarized in appendixes.
Abe, Yuta; Yamashita, Takuya; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro; Nagae, Yuji
Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 9 Pages, 2018/07
Kobata, Masaaki; Okane, Tetsuo; Nakajima, Kunihisa; Suzuki, Eriko; Owada, Kenji; Kobayashi, Keisuke*; Yamagami, Hiroshi; Osaka, Masahiko
Journal of Nuclear Materials, 498, p.387 - 394, 2018/01
Times Cited Count:7 Percentile:12.09(Materials Science, Multidisciplinary)In this study, for the understandings of Cesium (Cs) adsorption behavior on structure materials in severe accidents at a light water nuclear reactor, the chemical state of Cs and its distribution on the surface of SUS304 stainless steel (SS) with different Si concentration were investigated by hard X-ray photoelectron spectroscopy (HAXPES) and scanning electron microscope / energy dispersive X-ray spectroscopy (SEM/EDX). As a result, it was found that Cs is selectively adsorbed at the site where Si distributes with high concentration. CsFeSiO is a dominant Cs products in the case of low Si content, mainly formed, while Cs
Si
O
and Cs
Si
O
are formed in addition to CsFeSiO
in the case of high Si content. The chemical forms of the Cs compounds produced in the adsorption process on the SS surface has a close correlation with the concentration and chemical states of Si originally included in SS.
Yoshinaka, Kazuyuki
Gijutsushi, 29(11), p.12 - 15, 2017/11
We visited Onagawa NPP and discussed with the workers, for study of good practices at this plant, avoided severe accident, when the 3.11 earthquakes and tsunami disaster occurred. It was learned a part of background of the good practices, by discussion about organizational culture included in attitude for safety, philosophy of management, inheritance technology, and so on. It is important that we inform the knowledge leading safety culture analyzed from their experience to public, as professional engineer.
Tamaki, Hitoshi; Yoshida, Kazuo; Abe, Hitoshi; Sugiyama, Tomoyuki; Maruyama, Yu
Proceedings of Asian Symposium on Risk Assessment and Management 2017 (ASRAM 2017) (USB Flash Drive), 9 Pages, 2017/11
An accident of evaporation to dryness caused by boiling of high level radioactive liquid waste (HLLW) is postulated as one of severe accidents caused by the loss of cooling function at the fuel reprocessing plant. This accident can be divided into early boiling stage, late boiling stage and dry-out stage by characteristics of accident evolution. It is important to estimate the amount of fission product (FP) transport between the liquid and gas phases, and the amount of FP deposition on the walls in each stage in order to estimate the release amount of FP to the environment. Various research activities have been carried out for this issue. This paper reviews these activities and presents the recent activities at JAEA for development of simulation code for this type of accident.
Nagaishi, Ryuji
Radioisotopes, 66(11), p.601 - 610, 2017/11
no abstracts in English
Fukano, Yoshitaka
Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 10 Pages, 2017/07
An evaluation on the consequences of a hypothetical total instantaneous flow blockage at the coolant inlet of an SA (HTIB) using SAS4A code was also performed in the past study. SAS4A code was further developed by implementing analytical model of power control system in this study. An evaluation on the consequences of HTIB in Monju by this developed SAS4A code was performed. It was clarified by the analyses considering power control system that the reactor would be safely shut down by the plant protection system triggered by either of 116 percent over power or delayed neutron detector trip signals. Therefore the conclusion in the past study that the consequences of HTIB event would be much less severe than that of unprotected loss-of-flow event was strongly supported by this study. Furthermore SAS4A code was newly validated using an in-pile experiment which simulated HTIB events. The validity of SAS4A application to safety evaluation on the consequence of HTIB was further enhanced in this study.