Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 753

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys

Suzudo, Tomoaki; Takamizawa, Hisashi; Nishiyama, Yutaka; Caro, A.*; Toyama, Takeshi*; Nagai, Yasuyoshi*

Journal of Nuclear Materials, 540, p.152306_1 - 152306_10, 2020/11

Spinodal decomposition in thermally aged Fe-Cr alloys leads to significant hardening, which is the direct cause of the so-called 475C-embrittlement. To illustrate how spinodal decomposition induces hardening by atomistic interactions, we conducted a series of numerical simulations as well as reference experiments. The numerical results indicated that the hardness scales linearly with the short-range order (SRO) parameter, while the experimental result reproduced this relationship within statistical error. Both seemingly suggest that neighboring Cr-Cr atomic pairs essentially cause hardening, because SRO is by definition uniquely dependent on the appearance probability of such pairs. A further numerical investigation supported this notion, as it suggests that the dominant cause of hardening is the pinning effect of dislocations passing over such Cr-Cr pairs.

Journal Articles

${it In situ}$ WB-STEM observation of dislocation loop behavior in reactor pressure vessel steel during post-irradiation annealing

Du, Y.*; Yoshida, Kenta*; Shimada, Yusuke*; Toyama, Takeshi*; Inoue, Koji*; Arakawa, Kazuto*; Suzudo, Tomoaki; Milan, K. J.*; Gerard, R.*; Onuki, Somei*; et al.

Materialia, 12, p.100778_1 - 100778_10, 2020/08

In order to ensure the integrity of the reactor pressure vessel in the long term, it is necessary to understand the effects of irradiation on the materials. In this study, irradiation-induced dislocation loops were observed in neutron-irradiated reactor pressure vessel specimens during annealing using our newly developed WB-STEM. It was confirmed that the proportion of $$<100>$$ loops increased with increasing annealing temperature. We also succeeded in observing the phenomenon that two $$frac{1}{2}$$$$<111>$$ loops collide into a $$<100>$$ loop. Moreover, a phenomenon in which dislocation loops decorate dislocations was also observed, and the mechanism was successfully explained by molecular dynamics simulation.

Journal Articles

Monte Carlo radiation transport modelling of the current-biased kinetic inductance detector

Malins, A.; Machida, Masahiko; Vu, TheDang; Aizawa, Kazuya; Ishida, Takekazu*

Nuclear Instruments and Methods in Physics Research A, 953, p.163130_1 - 163130_7, 2020/02

 Times Cited Count:2 Percentile:16.78(Instruments & Instrumentation)

Journal Articles

Molecular dynamics simulations of phosphorus migration in a grain boundary of $$alpha$$-iron

Ebihara, Kenichi; Suzudo, Tomoaki

TMS 2020; 149th Annual Meeting & Exhibition Supplemental Proceedings, p.995 - 1002, 2020/02

Phosphorus (P) is known as an element which causes grain boundary (GB) embrittlement in steels. In addition, GB P segregation is promoted by the increase of vacancies and self interstitial atoms due to irradiation. Thus, the diffusion rate theory model for estimating irradiation-induced GB P segregation has been developed based on the atomic processes. Since the present model does not include the trapping and de-trapping processes at GBs, however, it cannot calculate the value which is directly compared with experimental results. In this study, we simulated the migration of a P atom in the $$Sigma$$3(111) symmetrical tilt GB. In addition, by tracking the migration of the P atom, the diffusion barrier energy was evaluated. As a result, the diffusion barrier energy was almost the same as the P segregation energy of an interstitial site in the GB, and it was found that P atoms migrate via interstitial sites in the GB.

JAEA Reports

Preparation of Computational Science Simulation Code SPLICE for Laser Manufacturing Process; Research activities on FY2019

Muramatsu, Toshiharu

JAEA-Research 2019-008, 111 Pages, 2019/11

JAEA-Research-2019-008.pdf:8.64MB

A general-purpose three-dimensional thermohydraulics numerical simulation code SPLICE (residual Stress control using Phenomenological modeling for Laser welding repair process In Computational Environment) was designed to deal with gas-liquid-solid consolidated incompressible viscous flows with a phase change process in various laser applications. Main features of the SPLICE code are as follows: (1) A multi-scale model is used to simulate complicated phenomena, such as welding to solidification of metal materials, thermal and mechanical interactions among gas, liquid and solid phases, etc., (2) SPLICE code is applicable for the evaluation of welding, cutting, piercing, coating, additive manufacturing, etc. and (3) A graphic user interface (GUI) is prepared for users to easy utilization of the SPLICE code. This report describes the details of the mathematics, physics, numerics, sample applications of the SPLICE code.

Journal Articles

Research and development behind a computation system for 3D distributions of air dose rates in the environment; Estimating environmental radiation doses using PHITS together with remote sensing data

Kim, M.; Malins, A.; Sakuma, Kazuyuki; Kitamura, Akihiro; Machida, Masahiko; Hasegawa, Yukihiro*; Yanagi, Hideaki*

Isotope News, (765), p.30 - 33, 2019/10

Here we outline a system for generating three dimensional models of urban and rural areas in Fukushima Prefecture. The $$^{134}$$Cs and $$^{137}$$Cs radioactivity distribution can be set flexibly across the different components of the model. The models incorporate realistic representations of local buildings, individual conifer and broadleaf trees, and the topography of the land surface. The system is demonstrated by modelling a suburban area 4 km from the Fukushima Daiichi Nuclear Power Plant that has yet to be decontaminated. Air dose rates calculated in PHITS were correlated with measurements taken across the site in a car-borne survey.

Journal Articles

Performance evaluation of differential die-away system in an integrated active neutron NDA system for nuclear non-proliferation and nuclear security

Ozu, Akira; Maeda, Makoto; Komeda, Masao; Toh, Yosuke

Proceedings of 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE NSS/MIC 2018) (Internet), 4 Pages, 2019/10

Journal Articles

Exascale simulations of fusion plasmas

Idomura, Yasuhiro; Watanabe, Tomohiko*; Todo, Yasushi*

Shimyureshon, 38(2), p.79 - 86, 2019/06

We promote the research and development of exascale fusion plasma simulations on Post-K towards estimation and prediction of core plasma performance, and exploration of improved operation scenarios on the next generation fusion experimental reactor ITER. In this paper, we review developed exascale simulation technologies and outcomes from validation studies on existing experimental devices, and discuss perspectives on exascale fusion plasma simulations on Post-K.

Journal Articles

Provision of laser irradiation conditions for melting and solidification processes using computational science simulation code SPLICE

Muramatsu, Toshiharu

Sumato Purosesu Gakkai-Shi, 8(1), p.4 - 8, 2019/01

no abstracts in English

Journal Articles

Overview of computational mouse models

Mohammadi, A.*; Kinase, Sakae; Safavi-Naeini, M.*

Computational Anatomical Animal Models; Methodological Developments and Research Applications, p.3_1 - 3_27, 2018/12

 Times Cited Count:0 Percentile:100

Journal Articles

Visiting Professor's Research Division

Nakajima, Norihiro; Aoki, Keiko*

Tokyo Daigaku Jinkobutsu Kogaku Kenkyu Senta 2017-Nendo Kenkyu Nempo, p.51 - 53, 84, 2018/12

Visiting professors research division in the Research into Artifacts, Center for Engineering (RACE) has been conducting research collaboration in Socio-Artifactology and Human-Artifactology, in order to establish the methodology of the fusion research in sociology and science for artifacts engineering for the third era activity of RACE. The division decided to observe how the methodology works in applications with social experiments and numerical experiments for 2017.

Journal Articles

Review of the performance of a car-borne survey system, KURAMA-II, used to measure the dose rate after the Fukushima Dai-ichi Nuclear Power Plant accident

Tsuda, Shuichi; Tanigaki, Minoru*; Yoshida, Tadayoshi; Saito, Kimiaki

Hoshasen, 44(3), p.109 - 118, 2018/11

JAEA has started to perform dose rate monitoring using a car-borne survey system KURAMA to rapidly produce the dose rate mappings of the deposited radionuclides in the environment after the Fukushima Dai-ichi Nuclear Power Plant accident. KURAMA is a car-borne survey system developed by Kyoto University to perform dose rate monitoring in a wide area in detail with rapidity. By improving KURAMA with continuous dose rate monitoring, the 2nd generation of KURAMA (KURAMA-II) succeeded in downsizing, durability and automated transmission of data so that enable detailed dose rate mapping in wide area in shorter period of time. This paper reports the radiation characteristics and the simulation analysis of KURAMA-II on the special issue of Hoshasen, the journal of Ionization Radiation Division in the Japan society of applied physics.

Journal Articles

Interpretation of thermal desorption spectra of hydrogen from aluminum using numerical simulation

Ebihara, Kenichi; Yamaguchi, Masatake; Tsuru, Tomohito; Itakura, Mitsuhiro

Keikinzoku, 68(11), p.596 - 602, 2018/11

Hydrogen embrittlement (HE) is considered as one cause of stress corrosion cracking. HE is a serious problem in the development of high strength aluminum alloy as with steels. For understanding HE, it is inevitable to know hydrogen trapping states in the alloys and it can be identified using thermal desorption spectrometry of H. In this study, we numerically simulated thermal desorption spectra of hydrogen in aluminum for a cylindrical and a plate specimens and interpreted the desorption peaks included in them on the basis of the trap site concentration and the trap energy. As a result, we found that the peak at the lowest-temperature side can result from grain boundaries and confirmed that the reported interpretation for other peaks is reasonable. We also obtained the result showing the possibility that the trap site concentration of defects changes during heating the specimens. This result may give a suggestion for the interpretation of temperature desorption spectra of steels.

Journal Articles

Numerical simulation of thermal striping phenomena for fundamental validation and uncertainty quantification; Application of least square version GCI and area validation method to impinging jet in a T-Junction piping system

Tanaka, Masaaki

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 14 Pages, 2018/10

A numerical simulation code MUGTHES has been developed to estimate high cycle thermal fatigue in SFRs. In development of numerical simulation code, verification, validation, and uncertainty quantification (VVUQ) are indispensable. In this study, numerical simulation at impinging jet condition in the WATLON experiment which was the water experiment of a T-junction piping system was performed for the fundamental validation. Based on the previous studies, the simplified least square version GCI method and the area validation metrics were employed as reference methods to quantify uncertainty and to measure the degree of difference between the numerical and the experimental results, respectively. Through the examinations, the potential applicability of the MUGTHES to the thermal striping phenomena was indicated and requirements of modification in the simulation was suggested in accordance with the uncertainty values.

Journal Articles

Study on simulation of thermal desorption spectra for a tempered martensitic steel with vacancies induced by hydrogen and strain

Ebihara, Kenichi; Saito, Kei*; Takai, Kenichi*

"Suiso Zeika No Kihon Yoin To Tokusei Hyoka" Kenkyukai Hokokusho, p.57 - 61, 2018/09

no abstracts in English

Journal Articles

Atomistic simulation of phosphorus segregation to $$Sigma$$3(111) symmetrical tilt grain boundary in $$alpha$$-iron

Ebihara, Kenichi; Suzudo, Tomoaki

Modelling and Simulation in Materials Science and Engineering, 26(6), p.065005_1 - 065005_10, 2018/09

 Times Cited Count:1 Percentile:86.13(Materials Science, Multidisciplinary)

Irradiation-induced grain boundary phosphorus segregation is an important factor for estimating the embrittlement of nuclear reactor pressure vessel steels, but the physical process of phosphorus migration to grain boundaries is still unclear. We numerically studied phosphorus migration toward $$Sigma$$3(111) symmetrical tilt grain boundary in $$alpha$$-iron using molecular dynamics. We found that, in the vicinity of the grain boundary within $$sim$$1 nm distance, an iron-phosphorus mixed dumbbell and an octahedral interstitial phosphorus atom push a self-interstitial atom into the grain boundary, and the phosphorus atom becomes a substitutional atom. A phosphorus vacancy complex in the region also becomes dissociated, and the vacancy is absorbed in the grain boundary without dragging phosphorus. The results claim that a novel view of the segregation process is required.

Journal Articles

Development of an air dose rate evaluation system (3D-ADRES) for complex real environments in Fukushima Prefecture; Using remote sensing data and evaluating the influence of different features (topography, soil, buildings, trees, etc.)

Kim, M.; Malins, A.; Sakuma, Kazuyuki; Kitamura, Akihiro; Machida, Masahiko; Hasegawa, Yukihiro*; Yanagi, Hideaki*

RIST News, (64), p.3 - 16, 2018/09

To improve the accuracy of simulations for air dose rates over fallout contaminated areas, the distribution of the radionuclides within the environment should be modelled realistically, e.g. considering differences in radioactivity levels between agricultural land, urban surfaces, and forest compartments. Moreover simulations should model the shielding of $$gamma$$ rays by buildings, trees and land topography. Here we outline a system for generating three dimensional models of urban and rural areas in Fukushima Prefecture. The $$^{134}$$Cs and $$^{137}$$Cs radioactivity distribution can be set flexibly across the different components of the model. The models incorporate realistic representations of local buildings, based on nine common Japanese designs, individual conifer and broadleaf trees, and the topography of the land surface. Models are generated from Digital Elevation Model (DEM) and Digital Surface Model (DSM) datasets, and refined by users assisted with ortho-photographs of target sites. Completed models are exported from the system in a format suitable for the Particle and Heavy Ion Transport code System (PHITS) for the calculation of air dose rates and other radiological quantities. The system is demonstrated by modelling a suburban area 4 km from the Fukushima Daiichi Nuclear Power Plant that has yet to be decontaminated. Air dose rates calculated in PHITS were correlated with measurements taken across the site in a car-borne survey.

Journal Articles

Computational science simulations for laser coating processes

Muramatsu, Toshiharu

Reza Kako Gakkai-Shi, 25(2), p.81 - 85, 2018/06

no abstracts in English

Journal Articles

Introduction of particle transport code PHITS and analytical model for estimating the atmospheric cosmic-ray spectra PARMA

Abe, Shinichiro; Sato, Tatsuhiko

Meson, (47), p.34 - 39, 2018/03

Some researchers actively investigate secondary cosmic-ray muon radiography for imaging of large structures, detecting nuclear matter, and so on. The simulation is one of effective methods to estimate the required time for muon radiography or to optimize detection system. In this report, we introduce particle transport code PHITS and analytical model for estimating the atmospheric cosmic-ray spectra PARMA. Benchmark results are also shown. PHITS describes intensities of terrestrial muons in the ground well. PHITS also shows good agreement with measured data for particle generations from several interactions between muon and material. These results indicate the practicability of PHITS for simulation of muon radiography. PARMA reproduces cosmic-ray spectra on several spots well. Excellent agreement is seen between the measurements and PARMA for muon fluxes with large zenith angles and high energies, which are important for muon radiography.

Journal Articles

State-of-the-art approach and issue to establish simulation credibility

Nakada, Kotaro*; Kudo, Yoshiro*; Koshizuka, Seiichi*; Tanaka, Masaaki

Nippon Genshiryoku Gakkai-Shi, 60(3), p.173 - 177, 2018/03

The Atomic Energy Society of Japan (AESJ) published "Guideline for Credibility Assessment of Nuclear Simulations 2015" in June, 2016 which specifies the concepts on methodology for the prediction with uncertainty quantification and the quality management based on the concept of verification and validation (V&V) of modeling and simulation. In this report, the outlines of activities in AESJ for publication of the guideline and the expectation for effective implementation of the guideline are described including that of the lectures with major respondents of the questionnaires.

753 (Records 1-20 displayed on this page)